// // Copyright 2011-2014 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "db_wbx_common.hpp" #include "adf4351_regs.hpp" #include "../common/adf435x_common.hpp" #include #include #include #include #include #include #include #include #include #include #include #include using namespace uhd; using namespace uhd::usrp; using namespace boost::assign; /*********************************************************************** * WBX Version 4 Constants **********************************************************************/ static const uhd::dict wbx_v4_tx_gain_ranges = map_list_of ("PGA0", gain_range_t(0, 31, 1.0)) ; static const freq_range_t wbx_v4_freq_range(25.0e6, 2.2e9); /*********************************************************************** * Gain-related functions **********************************************************************/ static int tx_pga0_gain_to_iobits(double &gain){ //clip the input gain = wbx_v4_tx_gain_ranges["PGA0"].clip(gain); //convert to attenuation double attn = wbx_v4_tx_gain_ranges["PGA0"].stop() - gain; //calculate the attenuation int attn_code = boost::math::iround(attn); int iobits = ( (attn_code & 16 ? 0 : TX_ATTN_16) | (attn_code & 8 ? 0 : TX_ATTN_8) | (attn_code & 4 ? 0 : TX_ATTN_4) | (attn_code & 2 ? 0 : TX_ATTN_2) | (attn_code & 1 ? 0 : TX_ATTN_1) ) & TX_ATTN_MASK; UHD_LOGV(often) << boost::format( "WBX TX Attenuation: %f dB, Code: %d, IO Bits %x, Mask: %x" ) % attn % attn_code % (iobits & TX_ATTN_MASK) % TX_ATTN_MASK << std::endl; //the actual gain setting gain = wbx_v4_tx_gain_ranges["PGA0"].stop() - double(attn_code); return iobits; } /*********************************************************************** * WBX Common Implementation **********************************************************************/ wbx_base::wbx_version4::wbx_version4(wbx_base *_self_wbx_base) { //register our handle on the primary wbx_base instance self_base = _self_wbx_base; //////////////////////////////////////////////////////////////////// // Register RX properties //////////////////////////////////////////////////////////////////// boost::uint16_t rx_id = _self_wbx_base->get_rx_id().to_uint16(); if(rx_id == 0x0063) this->get_rx_subtree()->create("name").set("WBXv4 RX"); else if(rx_id == 0x0081) this->get_rx_subtree()->create("name").set("WBX-120 RX"); this->get_rx_subtree()->create("freq/value") .coerce(boost::bind(&wbx_base::wbx_version4::set_lo_freq, this, dboard_iface::UNIT_RX, _1)) .set((wbx_v4_freq_range.start() + wbx_v4_freq_range.stop())/2.0); this->get_rx_subtree()->create("freq/range").set(wbx_v4_freq_range); //////////////////////////////////////////////////////////////////// // Register TX properties //////////////////////////////////////////////////////////////////// //get_tx_id() will always return GDB ID, so use RX ID to determine WBXv4 vs. WBX-120 if(rx_id == 0x0063) this->get_tx_subtree()->create("name").set("WBXv4 TX"); else if(rx_id == 0x0081) this->get_tx_subtree()->create("name").set("WBX-120 TX"); BOOST_FOREACH(const std::string &name, wbx_v4_tx_gain_ranges.keys()){ self_base->get_tx_subtree()->create("gains/"+name+"/value") .coerce(boost::bind(&wbx_base::wbx_version4::set_tx_gain, this, _1, name)) .set(wbx_v4_tx_gain_ranges[name].start()); self_base->get_tx_subtree()->create("gains/"+name+"/range") .set(wbx_v4_tx_gain_ranges[name]); } this->get_tx_subtree()->create("freq/value") .coerce(boost::bind(&wbx_base::wbx_version4::set_lo_freq, this, dboard_iface::UNIT_TX, _1)) .set((wbx_v4_freq_range.start() + wbx_v4_freq_range.stop())/2.0); this->get_tx_subtree()->create("freq/range").set(wbx_v4_freq_range); this->get_tx_subtree()->create("enabled") .subscribe(boost::bind(&wbx_base::wbx_version4::set_tx_enabled, this, _1)) .set(true); //start enabled //set attenuator control bits int v4_iobits = TX_ATTN_MASK; int v4_tx_mod = ADF435X_PDBRF; //set the gpio directions and atr controls self_base->get_iface()->set_pin_ctrl(dboard_iface::UNIT_TX, \ v4_tx_mod|v4_iobits); self_base->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, \ RXBB_PDB|ADF435X_PDBRF); self_base->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, \ TX_PUP_5V|TX_PUP_3V|v4_tx_mod|v4_iobits); self_base->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, \ RX_PUP_5V|RX_PUP_3V|ADF435X_CE|RXBB_PDB|ADF435X_PDBRF|RX_ATTN_MASK); //setup ATR for the mixer enables (always enabled to prevent phase slip //between bursts) set TX gain iobits to min gain (max attenuation) when //RX_ONLY or IDLE to suppress LO leakage self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, \ dboard_iface::ATR_REG_IDLE, v4_tx_mod, \ TX_ATTN_MASK | TX_MIXER_DIS | v4_tx_mod); self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, \ dboard_iface::ATR_REG_RX_ONLY, v4_tx_mod, \ TX_ATTN_MASK | TX_MIXER_DIS | v4_tx_mod); self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, \ dboard_iface::ATR_REG_TX_ONLY, v4_tx_mod, \ TX_ATTN_MASK | TX_MIXER_DIS | v4_tx_mod); self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, \ dboard_iface::ATR_REG_FULL_DUPLEX, v4_tx_mod, \ TX_ATTN_MASK | TX_MIXER_DIS | v4_tx_mod); self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, \ dboard_iface::ATR_REG_IDLE, \ RX_MIXER_ENB, RX_MIXER_DIS | RX_MIXER_ENB); self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, \ dboard_iface::ATR_REG_TX_ONLY, \ RX_MIXER_ENB, RX_MIXER_DIS | RX_MIXER_ENB); self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, \ dboard_iface::ATR_REG_RX_ONLY, \ RX_MIXER_ENB, RX_MIXER_DIS | RX_MIXER_ENB); self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, \ dboard_iface::ATR_REG_FULL_DUPLEX, \ RX_MIXER_ENB, RX_MIXER_DIS | RX_MIXER_ENB); } wbx_base::wbx_version4::~wbx_version4(void){ /* NOP */ } /*********************************************************************** * Enables **********************************************************************/ void wbx_base::wbx_version4::set_tx_enabled(bool enb) { self_base->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, (enb)? TX_POWER_UP | ADF435X_CE : TX_POWER_DOWN, TX_POWER_UP | TX_POWER_DOWN | 0); } /*********************************************************************** * Gain Handling **********************************************************************/ double wbx_base::wbx_version4::set_tx_gain(double gain, const std::string &name) { assert_has(wbx_v4_tx_gain_ranges.keys(), name, "wbx tx gain name"); if(name == "PGA0"){ boost::uint16_t io_bits = tx_pga0_gain_to_iobits(gain); self_base->_tx_gains[name] = gain; //write the new gain to tx gpio outputs //Update ATR with gain io_bits, only update for TX_ONLY and FULL_DUPLEX ATR states self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_TX_ONLY, io_bits, TX_ATTN_MASK); self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_FULL_DUPLEX, io_bits, TX_ATTN_MASK); } else UHD_THROW_INVALID_CODE_PATH(); return self_base->_tx_gains[name]; } /*********************************************************************** * Tuning **********************************************************************/ double wbx_base::wbx_version4::set_lo_freq(dboard_iface::unit_t unit, double target_freq) { //clip to tuning range target_freq = wbx_v4_freq_range.clip(target_freq); UHD_LOGV(often) << boost::format( "WBX tune: target frequency %f MHz" ) % (target_freq/1e6) << std::endl; /* * If the user sets 'mode_n=integer' in the tuning args, the user wishes to * tune in Integer-N mode, which can result in better spur * performance on some mixers. The default is fractional tuning. */ property_tree::sptr subtree = (unit == dboard_iface::UNIT_RX) ? self_base->get_rx_subtree() : self_base->get_tx_subtree(); device_addr_t tune_args = subtree->access("tune_args").get(); bool is_int_n = boost::iequals(tune_args.get("mode_n",""), "integer"); //map prescaler setting to mininmum integer divider (N) values (pg.18 prescaler) static const uhd::dict prescaler_to_min_int_div = map_list_of (adf4351_regs_t::PRESCALER_4_5, 23) (adf4351_regs_t::PRESCALER_8_9, 75) ; //map rf divider select output dividers to enums static const uhd::dict rfdivsel_to_enum = map_list_of (1, adf4351_regs_t::RF_DIVIDER_SELECT_DIV1) (2, adf4351_regs_t::RF_DIVIDER_SELECT_DIV2) (4, adf4351_regs_t::RF_DIVIDER_SELECT_DIV4) (8, adf4351_regs_t::RF_DIVIDER_SELECT_DIV8) (16, adf4351_regs_t::RF_DIVIDER_SELECT_DIV16) (32, adf4351_regs_t::RF_DIVIDER_SELECT_DIV32) (64, adf4351_regs_t::RF_DIVIDER_SELECT_DIV64) ; double reference_freq = self_base->get_iface()->get_clock_rate(unit); //The mixer has a divide-by-2 stage on the LO port so the synthesizer //frequency must 2x the target frequency. This introduces a 180 degree phase //ambiguity when trying to synchronize the phase of multiple boards. double synth_target_freq = target_freq * 2; adf4351_regs_t::prescaler_t prescaler = synth_target_freq > 3.6e9 ? adf4351_regs_t::PRESCALER_8_9 : adf4351_regs_t::PRESCALER_4_5; adf435x_tuning_constraints tuning_constraints; tuning_constraints.force_frac0 = is_int_n; tuning_constraints.band_sel_freq_max = 100e3; tuning_constraints.ref_doubler_threshold = 12.5e6; tuning_constraints.int_range = uhd::range_t(prescaler_to_min_int_div[prescaler], 4095); tuning_constraints.pfd_freq_max = 25e6; tuning_constraints.rf_divider_range = uhd::range_t(1, 64); //The feedback of the divided frequency must be disabled whenever the target frequency //divided by the minimum PFD frequency cannot meet the minimum integer divider (N) value. //If it is disabled, additional phase ambiguity will be introduced. With a minimum PFD //frequency of 10 MHz, synthesizer frequencies below 230 MHz (LO frequencies below 115 MHz) //will have too much ambiguity to synchronize. tuning_constraints.feedback_after_divider = (int(synth_target_freq / 10e6) >= prescaler_to_min_int_div[prescaler]); double synth_actual_freq = 0; adf435x_tuning_settings tuning_settings = tune_adf435x_synth( synth_target_freq, reference_freq, tuning_constraints, synth_actual_freq); //The mixer has a divide-by-2 stage on the LO port so the synthesizer //actual_freq must /2 the synth_actual_freq double actual_freq = synth_actual_freq / 2; //load the register values adf4351_regs_t regs; if (unit == dboard_iface::UNIT_RX) regs.output_power = (actual_freq == wbx_rx_lo_5dbm.clip(actual_freq)) ? adf4351_regs_t::OUTPUT_POWER_5DBM : adf4351_regs_t::OUTPUT_POWER_2DBM; else regs.output_power = (actual_freq == wbx_tx_lo_5dbm.clip(actual_freq)) ? adf4351_regs_t::OUTPUT_POWER_5DBM : adf4351_regs_t::OUTPUT_POWER_M1DBM; regs.frac_12_bit = tuning_settings.frac_12_bit; regs.int_16_bit = tuning_settings.int_16_bit; regs.mod_12_bit = tuning_settings.mod_12_bit; regs.clock_divider_12_bit = tuning_settings.clock_divider_12_bit; regs.feedback_select = tuning_constraints.feedback_after_divider ? adf4351_regs_t::FEEDBACK_SELECT_DIVIDED : adf4351_regs_t::FEEDBACK_SELECT_FUNDAMENTAL; regs.clock_div_mode = tuning_constraints.feedback_after_divider ? adf4351_regs_t::CLOCK_DIV_MODE_RESYNC_ENABLE : adf4351_regs_t::CLOCK_DIV_MODE_FAST_LOCK; regs.prescaler = prescaler; regs.r_counter_10_bit = tuning_settings.r_counter_10_bit; regs.reference_divide_by_2 = tuning_settings.r_divide_by_2_en ? adf4351_regs_t::REFERENCE_DIVIDE_BY_2_ENABLED : adf4351_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED; regs.reference_doubler = tuning_settings.r_doubler_en ? adf4351_regs_t::REFERENCE_DOUBLER_ENABLED : adf4351_regs_t::REFERENCE_DOUBLER_DISABLED; regs.band_select_clock_div = tuning_settings.band_select_clock_div; UHD_ASSERT_THROW(rfdivsel_to_enum.has_key(tuning_settings.rf_divider)); regs.rf_divider_select = rfdivsel_to_enum[tuning_settings.rf_divider]; regs.ldf = is_int_n ? adf4351_regs_t::LDF_INT_N : adf4351_regs_t::LDF_FRAC_N; //reset the N and R counter regs.counter_reset = adf4351_regs_t::COUNTER_RESET_ENABLED; self_base->get_iface()->write_spi(unit, spi_config_t::EDGE_RISE, regs.get_reg(2), 32); regs.counter_reset = adf4351_regs_t::COUNTER_RESET_DISABLED; //write the registers //correct power-up sequence to write registers (5, 4, 3, 2, 1, 0) int addr; boost::uint16_t rx_id = self_base->get_rx_id().to_uint16(); std::string board_name = (rx_id == 0x0081) ? "WBX-120" : "WBX"; for(addr=5; addr>=0; addr--){ UHD_LOGV(often) << boost::format( "%s SPI Reg (0x%02x): 0x%08x" ) % board_name.c_str() % addr % regs.get_reg(addr) << std::endl; self_base->get_iface()->write_spi( unit, spi_config_t::EDGE_RISE, regs.get_reg(addr), 32 ); } //return the actual frequency UHD_LOGV(often) << boost::format( "%s tune: actual frequency %f MHz" ) % board_name.c_str() % (actual_freq/1e6) << std::endl; return actual_freq; }