// // Copyright 2011-2012 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "db_wbx_common.hpp" #include "adf4350_regs.hpp" #include #include #include #include #include #include #include #include #include #include #include using namespace uhd; using namespace uhd::usrp; using namespace boost::assign; /*********************************************************************** * WBX Version 3 Constants **********************************************************************/ static const uhd::dict wbx_v3_tx_gain_ranges = map_list_of ("PGA0", gain_range_t(0, 31, 1.0)) ; static const freq_range_t wbx_v3_freq_range(68.75e6, 2.2e9); /*********************************************************************** * Gain-related functions **********************************************************************/ static int tx_pga0_gain_to_iobits(double &gain){ //clip the input gain = wbx_v3_tx_gain_ranges["PGA0"].clip(gain); //convert to attenuation double attn = wbx_v3_tx_gain_ranges["PGA0"].stop() - gain; //calculate the attenuation int attn_code = boost::math::iround(attn); int iobits = ( (attn_code & 16 ? 0 : TX_ATTN_16) | (attn_code & 8 ? 0 : TX_ATTN_8) | (attn_code & 4 ? 0 : TX_ATTN_4) | (attn_code & 2 ? 0 : TX_ATTN_2) | (attn_code & 1 ? 0 : TX_ATTN_1) ) & TX_ATTN_MASK; UHD_LOGV(often) << boost::format( "WBX TX Attenuation: %f dB, Code: %d, IO Bits %x, Mask: %x" ) % attn % attn_code % (iobits & TX_ATTN_MASK) % TX_ATTN_MASK << std::endl; //the actual gain setting gain = wbx_v3_tx_gain_ranges["PGA0"].stop() - double(attn_code); return iobits; } /*********************************************************************** * WBX Common Implementation **********************************************************************/ wbx_base::wbx_version3::wbx_version3(wbx_base *_self_wbx_base) { //register our handle on the primary wbx_base instance self_base = _self_wbx_base; //////////////////////////////////////////////////////////////////// // Register RX properties //////////////////////////////////////////////////////////////////// this->get_rx_subtree()->create("name").set("WBXv3 RX"); this->get_rx_subtree()->create("freq/value") .coerce(boost::bind(&wbx_base::wbx_version3::set_lo_freq, this, dboard_iface::UNIT_RX, _1)) .set((wbx_v3_freq_range.start() + wbx_v3_freq_range.stop())/2.0); this->get_rx_subtree()->create("freq/range").set(wbx_v3_freq_range); //////////////////////////////////////////////////////////////////// // Register TX properties //////////////////////////////////////////////////////////////////// this->get_tx_subtree()->create("name").set("WBXv3 TX"); BOOST_FOREACH(const std::string &name, wbx_v3_tx_gain_ranges.keys()){ self_base->get_tx_subtree()->create("gains/"+name+"/value") .coerce(boost::bind(&wbx_base::wbx_version3::set_tx_gain, this, _1, name)) .set(wbx_v3_tx_gain_ranges[name].start()); self_base->get_tx_subtree()->create("gains/"+name+"/range") .set(wbx_v3_tx_gain_ranges[name]); } this->get_tx_subtree()->create("freq/value") .coerce(boost::bind(&wbx_base::wbx_version3::set_lo_freq, this, dboard_iface::UNIT_TX, _1)) .set((wbx_v3_freq_range.start() + wbx_v3_freq_range.stop())/2.0); this->get_tx_subtree()->create("freq/range").set(wbx_v3_freq_range); this->get_tx_subtree()->create("enabled") .subscribe(boost::bind(&wbx_base::wbx_version3::set_tx_enabled, this, _1)) .set(true); //start enabled //set attenuator control bits int v3_iobits = TX_ATTN_MASK; int v3_tx_mod = ADF4350_PDBRF; //set the gpio directions and atr controls self_base->get_iface()->set_pin_ctrl(dboard_iface::UNIT_TX, \ v3_tx_mod|v3_iobits); self_base->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, \ RXBB_PDB|ADF4350_PDBRF); self_base->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, \ TX_PUP_5V|TX_PUP_3V|v3_tx_mod|v3_iobits); self_base->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, \ RX_PUP_5V|RX_PUP_3V|ADF4350_CE|RXBB_PDB|ADF4350_PDBRF|RX_ATTN_MASK); //setup ATR for the mixer enables (always enabled to prevent phase //slip between bursts). set TX gain iobits to min gain (max attenuation) //when RX_ONLY or IDLE to suppress LO leakage self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, \ dboard_iface::ATR_REG_IDLE, v3_tx_mod, \ TX_ATTN_MASK | TX_MIXER_DIS | v3_tx_mod); self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, \ dboard_iface::ATR_REG_RX_ONLY, v3_tx_mod, \ TX_ATTN_MASK | TX_MIXER_DIS | v3_tx_mod); self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, \ dboard_iface::ATR_REG_TX_ONLY, v3_tx_mod, \ TX_ATTN_MASK | TX_MIXER_DIS | v3_tx_mod); self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, \ dboard_iface::ATR_REG_FULL_DUPLEX, v3_tx_mod, \ TX_ATTN_MASK | TX_MIXER_DIS | v3_tx_mod); self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, \ dboard_iface::ATR_REG_IDLE, \ RX_MIXER_ENB, RX_MIXER_DIS | RX_MIXER_ENB); self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, \ dboard_iface::ATR_REG_TX_ONLY, \ RX_MIXER_ENB, RX_MIXER_DIS | RX_MIXER_ENB); self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, \ dboard_iface::ATR_REG_RX_ONLY, \ RX_MIXER_ENB, RX_MIXER_DIS | RX_MIXER_ENB); self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, \ dboard_iface::ATR_REG_FULL_DUPLEX, \ RX_MIXER_ENB, RX_MIXER_DIS | RX_MIXER_ENB); } wbx_base::wbx_version3::~wbx_version3(void){ /* NOP */ } /*********************************************************************** * Enables **********************************************************************/ void wbx_base::wbx_version3::set_tx_enabled(bool enb){ self_base->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, (enb)? TX_POWER_UP | ADF4350_CE : TX_POWER_DOWN, TX_POWER_UP | TX_POWER_DOWN | 0); } /*********************************************************************** * Gain Handling **********************************************************************/ double wbx_base::wbx_version3::set_tx_gain(double gain, const std::string &name){ assert_has(wbx_v3_tx_gain_ranges.keys(), name, "wbx tx gain name"); if(name == "PGA0"){ boost::uint16_t io_bits = tx_pga0_gain_to_iobits(gain); self_base->_tx_gains[name] = gain; //write the new gain to tx gpio outputs //Update ATR with gain io_bits, only update for TX_ONLY and FULL_DUPLEX ATR states self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_TX_ONLY, io_bits, TX_ATTN_MASK); self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_FULL_DUPLEX, io_bits, TX_ATTN_MASK); } else UHD_THROW_INVALID_CODE_PATH(); return self_base->_tx_gains[name]; //shadow } /*********************************************************************** * Tuning **********************************************************************/ double wbx_base::wbx_version3::set_lo_freq(dboard_iface::unit_t unit, double target_freq) { //clip to tuning range target_freq = wbx_v3_freq_range.clip(target_freq); UHD_LOGV(often) << boost::format( "WBX tune: target frequency %f Mhz" ) % (target_freq/1e6) << std::endl; //start with target_freq*2 because mixer has divide by 2 target_freq *= 2; //map prescaler setting to mininmum integer divider (N) values (pg.18 prescaler) static const uhd::dict prescaler_to_min_int_div = map_list_of (0,23) //adf4350_regs_t::PRESCALER_4_5 (1,75) //adf4350_regs_t::PRESCALER_8_9 ; //map rf divider select output dividers to enums static const uhd::dict rfdivsel_to_enum = map_list_of (1, adf4350_regs_t::RF_DIVIDER_SELECT_DIV1) (2, adf4350_regs_t::RF_DIVIDER_SELECT_DIV2) (4, adf4350_regs_t::RF_DIVIDER_SELECT_DIV4) (8, adf4350_regs_t::RF_DIVIDER_SELECT_DIV8) (16, adf4350_regs_t::RF_DIVIDER_SELECT_DIV16) ; double actual_freq, pfd_freq; double ref_freq = self_base->get_iface()->get_clock_rate(unit); int R=0, BS=0, N=0, FRAC=0, MOD=0; int RFdiv = 1; adf4350_regs_t::reference_divide_by_2_t T = adf4350_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED; adf4350_regs_t::reference_doubler_t D = adf4350_regs_t::REFERENCE_DOUBLER_DISABLED; //Reference doubler for 50% duty cycle // if ref_freq < 12.5MHz enable regs.reference_divide_by_2 if(ref_freq <= 12.5e6) D = adf4350_regs_t::REFERENCE_DOUBLER_ENABLED; //increase RF divider until acceptable VCO frequency const bool do_sync = (target_freq/2 > ref_freq); double vco_freq = target_freq; while (vco_freq < 2.2e9) { vco_freq *= 2; RFdiv *= 2; } if (do_sync) vco_freq = target_freq; //use 8/9 prescaler for vco_freq > 3 GHz (pg.18 prescaler) adf4350_regs_t::prescaler_t prescaler = vco_freq > 3e9 ? adf4350_regs_t::PRESCALER_8_9 : adf4350_regs_t::PRESCALER_4_5; /* * The goal here is to loop though possible R dividers, * band select clock dividers, N (int) dividers, and FRAC * (frac) dividers. * * Calculate the N and F dividers for each set of values. * The loop exits when it meets all of the constraints. * The resulting loop values are loaded into the registers. * * from pg.21 * * f_pfd = f_ref*(1+D)/(R*(1+T)) * f_vco = (N + (FRAC/MOD))*f_pfd * N = f_vco/f_pfd - FRAC/MOD = f_vco*((R*(T+1))/(f_ref*(1+D))) - FRAC/MOD * f_rf = f_vco/RFdiv) * f_actual = f_rf/2 */ for(R = 1; R <= 1023; R+=1){ //PFD input frequency = f_ref/R ... ignoring Reference doubler/divide-by-2 (D & T) pfd_freq = ref_freq*(1+D)/(R*(1+T)); //keep the PFD frequency at or below 25MHz (Loop Filter Bandwidth) if (pfd_freq > 25e6) continue; //ignore fractional part of tuning N = int(std::floor(vco_freq/pfd_freq)); //keep N > minimum int divider requirement if (N < prescaler_to_min_int_div[prescaler]) continue; for(BS=1; BS <= 255; BS+=1){ //keep the band select frequency at or below 100KHz //constraint on band select clock if (pfd_freq/BS > 100e3) continue; goto done_loop; } } done_loop: //Fractional-N calculation MOD = 4095; //max fractional accuracy FRAC = int((vco_freq/pfd_freq - N)*MOD); //Reference divide-by-2 for 50% duty cycle // if R even, move one divide by 2 to to regs.reference_divide_by_2 if(R % 2 == 0){ T = adf4350_regs_t::REFERENCE_DIVIDE_BY_2_ENABLED; R /= 2; } //actual frequency calculation actual_freq = double((N + (double(FRAC)/double(MOD)))*ref_freq*(1+int(D))/(R*(1+int(T)))/2/(vco_freq/target_freq)); UHD_LOGV(often) << boost::format("WBX Intermediates: ref=%0.2f, outdiv=%f, fbdiv=%f") % (ref_freq*(1+int(D))/(R*(1+int(T)))) % double(RFdiv*2) % double(N + double(FRAC)/double(MOD)) << std::endl << boost::format("WBX tune: R=%d, BS=%d, N=%d, FRAC=%d, MOD=%d, T=%d, D=%d, RFdiv=%d" ) % R % BS % N % FRAC % MOD % T % D % RFdiv << std::endl << boost::format("WBX Frequencies (MHz): REQ=%0.2f, ACT=%0.2f, VCO=%0.2f, PFD=%0.2f, BAND=%0.2f" ) % (target_freq/1e6) % (actual_freq/1e6) % (vco_freq/1e6) % (pfd_freq/1e6) % (pfd_freq/BS/1e6) << std::endl; //load the register values adf4350_regs_t regs; regs.frac_12_bit = FRAC; regs.int_16_bit = N; regs.mod_12_bit = MOD; if (do_sync) { regs.clock_divider_12_bit = std::max(1, int(std::ceil(400e-6*pfd_freq/MOD))); regs.feedback_select = adf4350_regs_t::FEEDBACK_SELECT_DIVIDED; regs.clock_div_mode = adf4350_regs_t::CLOCK_DIV_MODE_RESYNC_ENABLE; } regs.prescaler = prescaler; regs.r_counter_10_bit = R; regs.reference_divide_by_2 = T; regs.reference_doubler = D; regs.band_select_clock_div = BS; UHD_ASSERT_THROW(rfdivsel_to_enum.has_key(RFdiv)); regs.rf_divider_select = rfdivsel_to_enum[RFdiv]; if (unit == dboard_iface::UNIT_RX) { freq_range_t rx_lo_5dbm = list_of (range_t(0.05e9, 1.4e9)) ; freq_range_t rx_lo_2dbm = list_of (range_t(1.4e9, 2.2e9)) ; if (actual_freq == rx_lo_5dbm.clip(actual_freq)) regs.output_power = adf4350_regs_t::OUTPUT_POWER_5DBM; if (actual_freq == rx_lo_2dbm.clip(actual_freq)) regs.output_power = adf4350_regs_t::OUTPUT_POWER_2DBM; } else if (unit == dboard_iface::UNIT_TX) { freq_range_t tx_lo_5dbm = list_of (range_t(0.05e9, 1.7e9)) (range_t(1.9e9, 2.2e9)) ; freq_range_t tx_lo_m1dbm = list_of (range_t(1.7e9, 1.9e9)) ; if (actual_freq == tx_lo_5dbm.clip(actual_freq)) regs.output_power = adf4350_regs_t::OUTPUT_POWER_5DBM; if (actual_freq == tx_lo_m1dbm.clip(actual_freq)) regs.output_power = adf4350_regs_t::OUTPUT_POWER_M1DBM; } //reset the N and R counter regs.counter_reset = adf4350_regs_t::COUNTER_RESET_ENABLED; self_base->get_iface()->write_spi(unit, spi_config_t::EDGE_RISE, regs.get_reg(2), 32); regs.counter_reset = adf4350_regs_t::COUNTER_RESET_DISABLED; //write the registers //correct power-up sequence to write registers (5, 4, 3, 2, 1, 0) int addr; for(addr=5; addr>=0; addr--){ UHD_LOGV(often) << boost::format( "WBX SPI Reg (0x%02x): 0x%08x" ) % addr % regs.get_reg(addr) << std::endl; self_base->get_iface()->write_spi( unit, spi_config_t::EDGE_RISE, regs.get_reg(addr), 32 ); } //return the actual frequency UHD_LOGV(often) << boost::format( "WBX tune: actual frequency %f Mhz" ) % (actual_freq/1e6) << std::endl; return actual_freq; }