//
// Copyright 2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "db_wbx_common.hpp"
#include "adf4350_regs.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace uhd;
using namespace uhd::usrp;
using namespace boost::assign;
/***********************************************************************
* WBX Version 2 Constants
**********************************************************************/
static const uhd::dict wbx_v2_tx_gain_ranges = map_list_of
("PGA0", gain_range_t(0, 25, 0.05))
;
static const freq_range_t wbx_v2_freq_range(68.75e6, 2.2e9);
/***********************************************************************
* Gain-related functions
**********************************************************************/
static double tx_pga0_gain_to_dac_volts(double &gain){
//clip the input
gain = wbx_v2_tx_gain_ranges["PGA0"].clip(gain);
//voltage level constants
static const double max_volts = 0.5, min_volts = 1.4;
static const double slope = (max_volts-min_volts)/wbx_v2_tx_gain_ranges["PGA0"].stop();
//calculate the voltage for the aux dac
double dac_volts = gain*slope + min_volts;
UHD_LOGV(often) << boost::format(
"WBX TX Gain: %f dB, dac_volts: %f V"
) % gain % dac_volts << std::endl;
//the actual gain setting
gain = (dac_volts - min_volts)/slope;
return dac_volts;
}
/***********************************************************************
* WBX Version 2 Implementation
**********************************************************************/
wbx_base::wbx_version2::wbx_version2(wbx_base *_self_wbx_base) {
//register our handle on the primary wbx_base instance
self_base = _self_wbx_base;
////////////////////////////////////////////////////////////////////
// Register RX properties
////////////////////////////////////////////////////////////////////
this->get_rx_subtree()->create("name").set("WBX RX v2");
this->get_rx_subtree()->create("freq/value")
.coerce(boost::bind(&wbx_base::wbx_version2::set_lo_freq, this, dboard_iface::UNIT_RX, _1))
.set((wbx_v2_freq_range.start() + wbx_v2_freq_range.stop())/2.0);
this->get_rx_subtree()->create("freq/range").set(wbx_v2_freq_range);
////////////////////////////////////////////////////////////////////
// Register TX properties
////////////////////////////////////////////////////////////////////
this->get_tx_subtree()->create("name").set("WBX TX v2");
BOOST_FOREACH(const std::string &name, wbx_v2_tx_gain_ranges.keys()){
self_base->get_tx_subtree()->create("gains/"+name+"/value")
.coerce(boost::bind(&wbx_base::wbx_version2::set_tx_gain, this, _1, name))
.set(wbx_v2_tx_gain_ranges[name].start());
self_base->get_tx_subtree()->create("gains/"+name+"/range")
.set(wbx_v2_tx_gain_ranges[name]);
}
this->get_tx_subtree()->create("freq/value")
.coerce(boost::bind(&wbx_base::wbx_version2::set_lo_freq, this, dboard_iface::UNIT_TX, _1))
.set((wbx_v2_freq_range.start() + wbx_v2_freq_range.stop())/2.0);
this->get_tx_subtree()->create("freq/range").set(wbx_v2_freq_range);
this->get_tx_subtree()->create("enabled")
.subscribe(boost::bind(&wbx_base::wbx_version2::set_tx_enabled, this, _1))
.set(true); //start enabled
//set attenuator control bits
int v2_iobits = ADF4350_CE;
int v2_tx_mod = TXMOD_EN|ADF4350_PDBRF;
//set the gpio directions and atr controls
self_base->get_iface()->set_pin_ctrl(dboard_iface::UNIT_TX, v2_tx_mod);
self_base->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, RXBB_PDB|ADF4350_PDBRF);
self_base->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, TX_PUP_5V|TX_PUP_3V|v2_tx_mod|v2_iobits);
self_base->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, RX_PUP_5V|RX_PUP_3V|ADF4350_CE|RXBB_PDB|ADF4350_PDBRF|RX_ATTN_MASK);
//setup ATR for the mixer enables (always enabled to prevent phase slip between bursts)
self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_IDLE, v2_tx_mod, TX_MIXER_DIS | v2_tx_mod);
self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_RX_ONLY, v2_tx_mod, TX_MIXER_DIS | v2_tx_mod);
self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_TX_ONLY, v2_tx_mod, TX_MIXER_DIS | v2_tx_mod);
self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_FULL_DUPLEX, v2_tx_mod, TX_MIXER_DIS | v2_tx_mod);
self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_IDLE, RX_MIXER_ENB, RX_MIXER_DIS | RX_MIXER_ENB);
self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_TX_ONLY, RX_MIXER_ENB, RX_MIXER_DIS | RX_MIXER_ENB);
self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_RX_ONLY, RX_MIXER_ENB, RX_MIXER_DIS | RX_MIXER_ENB);
self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_FULL_DUPLEX, RX_MIXER_ENB, RX_MIXER_DIS | RX_MIXER_ENB);
}
wbx_base::wbx_version2::~wbx_version2(void){
/* NOP */
}
/***********************************************************************
* Enables
**********************************************************************/
void wbx_base::wbx_version2::set_tx_enabled(bool enb){
self_base->get_iface()->set_gpio_out(dboard_iface::UNIT_TX,
(enb)? TX_POWER_UP | ADF4350_CE : TX_POWER_DOWN, TX_POWER_UP | TX_POWER_DOWN | ADF4350_CE);
}
/***********************************************************************
* Gain Handling
**********************************************************************/
double wbx_base::wbx_version2::set_tx_gain(double gain, const std::string &name){
assert_has(wbx_v2_tx_gain_ranges.keys(), name, "wbx tx gain name");
if(name == "PGA0"){
double dac_volts = tx_pga0_gain_to_dac_volts(gain);
self_base->_tx_gains[name] = gain;
//write the new voltage to the aux dac
self_base->get_iface()->write_aux_dac(dboard_iface::UNIT_TX, dboard_iface::AUX_DAC_A, dac_volts);
}
else UHD_THROW_INVALID_CODE_PATH();
return self_base->_tx_gains[name]; //shadowed
}
/***********************************************************************
* Tuning
**********************************************************************/
double wbx_base::wbx_version2::set_lo_freq(dboard_iface::unit_t unit, double target_freq) {
//clip to tuning range
target_freq = wbx_v2_freq_range.clip(target_freq);
UHD_LOGV(often) << boost::format(
"WBX tune: target frequency %f Mhz"
) % (target_freq/1e6) << std::endl;
//map prescaler setting to mininmum integer divider (N) values (pg.18 prescaler)
static const uhd::dict prescaler_to_min_int_div = map_list_of
(0,23) //adf4350_regs_t::PRESCALER_4_5
(1,75) //adf4350_regs_t::PRESCALER_8_9
;
//map rf divider select output dividers to enums
static const uhd::dict rfdivsel_to_enum = map_list_of
(1, adf4350_regs_t::RF_DIVIDER_SELECT_DIV1)
(2, adf4350_regs_t::RF_DIVIDER_SELECT_DIV2)
(4, adf4350_regs_t::RF_DIVIDER_SELECT_DIV4)
(8, adf4350_regs_t::RF_DIVIDER_SELECT_DIV8)
(16, adf4350_regs_t::RF_DIVIDER_SELECT_DIV16)
;
double actual_freq, pfd_freq;
double ref_freq = self_base->get_iface()->get_clock_rate(unit);
int R=0, BS=0, N=0, FRAC=0, MOD=0;
int RFdiv = 1;
adf4350_regs_t::reference_divide_by_2_t T = adf4350_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED;
adf4350_regs_t::reference_doubler_t D = adf4350_regs_t::REFERENCE_DOUBLER_DISABLED;
//Reference doubler for 50% duty cycle
// if ref_freq < 12.5MHz enable regs.reference_divide_by_2
if(ref_freq <= 12.5e6) D = adf4350_regs_t::REFERENCE_DOUBLER_ENABLED;
//increase RF divider until acceptable VCO frequency
//start with target_freq*2 because mixer has divide by 2
double vco_freq = target_freq*2;
while (vco_freq < 2.2e9) {
vco_freq *= 2;
RFdiv *= 2;
}
//use 8/9 prescaler for vco_freq > 3 GHz (pg.18 prescaler)
adf4350_regs_t::prescaler_t prescaler = vco_freq > 3e9 ? adf4350_regs_t::PRESCALER_8_9 : adf4350_regs_t::PRESCALER_4_5;
/*
* The goal here is to loop though possible R dividers,
* band select clock dividers, N (int) dividers, and FRAC
* (frac) dividers.
*
* Calculate the N and F dividers for each set of values.
* The loop exists when it meets all of the constraints.
* The resulting loop values are loaded into the registers.
*
* from pg.21
*
* f_pfd = f_ref*(1+D)/(R*(1+T))
* f_vco = (N + (FRAC/MOD))*f_pfd
* N = f_vco/f_pfd - FRAC/MOD = f_vco*((R*(T+1))/(f_ref*(1+D))) - FRAC/MOD
* f_rf = f_vco/RFdiv)
* f_actual = f_rf/2
*/
for(R = 1; R <= 1023; R+=1){
//PFD input frequency = f_ref/R ... ignoring Reference doubler/divide-by-2 (D & T)
pfd_freq = ref_freq*(1+D)/(R*(1+T));
//keep the PFD frequency at or below 25MHz (Loop Filter Bandwidth)
if (pfd_freq > 25e6) continue;
//ignore fractional part of tuning
N = int(std::floor(vco_freq/pfd_freq));
//keep N > minimum int divider requirement
if (N < prescaler_to_min_int_div[prescaler]) continue;
for(BS=1; BS <= 255; BS+=1){
//keep the band select frequency at or below 100KHz
//constraint on band select clock
if (pfd_freq/BS > 100e3) continue;
goto done_loop;
}
} done_loop:
//Fractional-N calculation
MOD = 4095; //max fractional accuracy
FRAC = int((vco_freq/pfd_freq - N)*MOD);
//Reference divide-by-2 for 50% duty cycle
// if R even, move one divide by 2 to to regs.reference_divide_by_2
if(R % 2 == 0){
T = adf4350_regs_t::REFERENCE_DIVIDE_BY_2_ENABLED;
R /= 2;
}
//actual frequency calculation
actual_freq = double((N + (double(FRAC)/double(MOD)))*ref_freq*(1+int(D))/(R*(1+int(T)))/RFdiv/2);
UHD_LOGV(often)
<< boost::format("WBX Intermediates: ref=%0.2f, outdiv=%f, fbdiv=%f") % (ref_freq*(1+int(D))/(R*(1+int(T)))) % double(RFdiv*2) % double(N + double(FRAC)/double(MOD)) << std::endl
<< boost::format("WBX tune: R=%d, BS=%d, N=%d, FRAC=%d, MOD=%d, T=%d, D=%d, RFdiv=%d, LD=%s"
) % R % BS % N % FRAC % MOD % T % D % RFdiv % self_base->get_locked(unit).to_pp_string() << std::endl
<< boost::format("WBX Frequencies (MHz): REQ=%0.2f, ACT=%0.2f, VCO=%0.2f, PFD=%0.2f, BAND=%0.2f"
) % (target_freq/1e6) % (actual_freq/1e6) % (vco_freq/1e6) % (pfd_freq/1e6) % (pfd_freq/BS/1e6) << std::endl;
//load the register values
adf4350_regs_t regs;
regs.frac_12_bit = FRAC;
regs.int_16_bit = N;
regs.mod_12_bit = MOD;
regs.prescaler = prescaler;
regs.r_counter_10_bit = R;
regs.reference_divide_by_2 = T;
regs.reference_doubler = D;
regs.band_select_clock_div = BS;
UHD_ASSERT_THROW(rfdivsel_to_enum.has_key(RFdiv));
regs.rf_divider_select = rfdivsel_to_enum[RFdiv];
if (unit == dboard_iface::UNIT_RX) {
freq_range_t rx_lo_5dbm = list_of
(range_t(0.05e9, 1.4e9))
;
freq_range_t rx_lo_2dbm = list_of
(range_t(1.4e9, 2.2e9))
;
if (actual_freq == rx_lo_5dbm.clip(actual_freq)) regs.output_power = adf4350_regs_t::OUTPUT_POWER_5DBM;
if (actual_freq == rx_lo_2dbm.clip(actual_freq)) regs.output_power = adf4350_regs_t::OUTPUT_POWER_2DBM;
} else if (unit == dboard_iface::UNIT_TX) {
freq_range_t tx_lo_5dbm = list_of
(range_t(0.05e9, 1.7e9))
(range_t(1.9e9, 2.2e9))
;
freq_range_t tx_lo_m1dbm = list_of
(range_t(1.7e9, 1.9e9))
;
if (actual_freq == tx_lo_5dbm.clip(actual_freq)) regs.output_power = adf4350_regs_t::OUTPUT_POWER_5DBM;
if (actual_freq == tx_lo_m1dbm.clip(actual_freq)) regs.output_power = adf4350_regs_t::OUTPUT_POWER_M1DBM;
}
//write the registers
//correct power-up sequence to write registers (5, 4, 3, 2, 1, 0)
int addr;
for(addr=5; addr>=0; addr--){
UHD_LOGV(often) << boost::format(
"WBX SPI Reg (0x%02x): 0x%08x"
) % addr % regs.get_reg(addr) << std::endl;
self_base->get_iface()->write_spi(
unit, spi_config_t::EDGE_RISE,
regs.get_reg(addr), 32
);
}
//return the actual frequency
UHD_LOGV(often) << boost::format(
"WBX tune: actual frequency %f Mhz"
) % (actual_freq/1e6) << std::endl;
return actual_freq;
}