// // Copyright 2011 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Common IO Pins #define ADF4350_CE (1 << 3) #define ADF4350_PDBRF (1 << 2) #define ADF4350_MUXOUT (1 << 1) // INPUT!!! #define LOCKDET_MASK (1 << 0) // INPUT!!! // TX IO Pins #define TX_PUP_5V (1 << 7) // enables 5.0V power supply #define TX_PUP_3V (1 << 6) // enables 3.3V supply #define TXMOD_EN (1 << 4) // on UNIT_TX, 1 enables TX Modulator // RX IO Pins #define RX_PUP_5V (1 << 7) // enables 5.0V power supply #define RX_PUP_3V (1 << 6) // enables 3.3V supply #define RXBB_PDB (1 << 4) // on UNIT_RX, 1 powers up RX baseband // RX Attenuator Pins #define RX_ATTN_SHIFT 8 // lsb of RX Attenuator Control #define RX_ATTN_MASK (63 << RX_ATTN_SHIFT) // valid bits of RX Attenuator Control // Mixer functions #define TX_MIXER_ENB (TXMOD_EN|ADF4350_PDBRF) #define TX_MIXER_DIS 0 #define RX_MIXER_ENB (RXBB_PDB|ADF4350_PDBRF) #define RX_MIXER_DIS 0 // Power functions #define TX_POWER_UP (TX_PUP_5V|TX_PUP_3V|ADF4350_CE) // high enables power supply #define TX_POWER_DOWN 0 #define RX_POWER_UP (RX_PUP_5V|RX_PUP_3V|ADF4350_CE) // high enables power supply #define RX_POWER_DOWN 0 #include "db_wbx_common.hpp" #include "adf4350_regs.hpp" #include #include #include #include #include #include #include #include #include #include #include using namespace uhd; using namespace uhd::usrp; using namespace boost::assign; /*********************************************************************** * The WBX Common dboard constants **********************************************************************/ static const bool wbx_debug = false; static const uhd::dict wbx_tx_gain_ranges = map_list_of ("PGA0", gain_range_t(0, 25, 0.05)) ; static const uhd::dict wbx_rx_gain_ranges = map_list_of ("PGA0", gain_range_t(0, 31.5, 0.5)) ; /*********************************************************************** * WBX Common Implementation **********************************************************************/ wbx_base::wbx_base(ctor_args_t args) : xcvr_dboard_base(args){ //enable the clocks that we need this->get_iface()->set_clock_enabled(dboard_iface::UNIT_TX, true); this->get_iface()->set_clock_enabled(dboard_iface::UNIT_RX, true); //set the gpio directions and atr controls this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_TX, TXMOD_EN|ADF4350_PDBRF); this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, RXBB_PDB|ADF4350_PDBRF); this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, TX_PUP_5V|TX_PUP_3V|ADF4350_CE|TXMOD_EN|ADF4350_PDBRF); this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, RX_PUP_5V|RX_PUP_3V|ADF4350_CE|RXBB_PDB|ADF4350_PDBRF|RX_ATTN_MASK); //setup ATR for the mixer enables this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_IDLE, TX_MIXER_DIS, TX_MIXER_DIS | TX_MIXER_ENB); this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_RX_ONLY, TX_MIXER_DIS, TX_MIXER_DIS | TX_MIXER_ENB); this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_TX_ONLY, TX_MIXER_ENB, TX_MIXER_DIS | TX_MIXER_ENB); this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_FULL_DUPLEX, TX_MIXER_ENB, TX_MIXER_DIS | TX_MIXER_ENB); this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_IDLE, RX_MIXER_DIS, RX_MIXER_DIS | RX_MIXER_ENB); this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_TX_ONLY, RX_MIXER_DIS, RX_MIXER_DIS | RX_MIXER_ENB); this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_RX_ONLY, RX_MIXER_ENB, RX_MIXER_DIS | RX_MIXER_ENB); this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_FULL_DUPLEX, RX_MIXER_ENB, RX_MIXER_DIS | RX_MIXER_ENB); //set some default values BOOST_FOREACH(const std::string &name, wbx_tx_gain_ranges.keys()){ set_tx_gain(wbx_tx_gain_ranges[name].start(), name); } BOOST_FOREACH(const std::string &name, wbx_rx_gain_ranges.keys()){ set_rx_gain(wbx_rx_gain_ranges[name].start(), name); } set_rx_enabled(false); set_tx_enabled(false); } wbx_base::~wbx_base(void){ /* NOP */ } /*********************************************************************** * Enables **********************************************************************/ void wbx_base::set_rx_enabled(bool enb){ this->get_iface()->set_gpio_out(dboard_iface::UNIT_RX, (enb)? RX_POWER_UP : RX_POWER_DOWN, RX_POWER_UP | RX_POWER_DOWN ); } void wbx_base::set_tx_enabled(bool enb){ this->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, (enb)? TX_POWER_UP : TX_POWER_DOWN, TX_POWER_UP | TX_POWER_DOWN ); } /*********************************************************************** * Gain Handling **********************************************************************/ static int rx_pga0_gain_to_iobits(double &gain){ //clip the input gain = wbx_rx_gain_ranges["PGA0"].clip(gain); //convert to attenuation double attn = wbx_rx_gain_ranges["PGA0"].stop() - gain; //calculate the attenuation int attn_code = boost::math::iround(attn*2); int iobits = ((~attn_code) << RX_ATTN_SHIFT) & RX_ATTN_MASK; if (wbx_debug) std::cerr << boost::format( "WBX Attenuation: %f dB, Code: %d, IO Bits %x, Mask: %x" ) % attn % attn_code % (iobits & RX_ATTN_MASK) % RX_ATTN_MASK << std::endl; //the actual gain setting gain = wbx_rx_gain_ranges["PGA0"].stop() - double(attn_code)/2; return iobits; } static double tx_pga0_gain_to_dac_volts(double &gain){ //clip the input gain = wbx_tx_gain_ranges["PGA0"].clip(gain); //voltage level constants static const double max_volts = 0.5, min_volts = 1.4; static const double slope = (max_volts-min_volts)/wbx_tx_gain_ranges["PGA0"].stop(); //calculate the voltage for the aux dac double dac_volts = gain*slope + min_volts; if (wbx_debug) std::cerr << boost::format( "WBX TX Gain: %f dB, dac_volts: %f V" ) % gain % dac_volts << std::endl; //the actual gain setting gain = (dac_volts - min_volts)/slope; return dac_volts; } void wbx_base::set_tx_gain(double gain, const std::string &name){ assert_has(wbx_tx_gain_ranges.keys(), name, "wbx tx gain name"); if(name == "PGA0"){ double dac_volts = tx_pga0_gain_to_dac_volts(gain); _tx_gains[name] = gain; //write the new voltage to the aux dac this->get_iface()->write_aux_dac(dboard_iface::UNIT_TX, dboard_iface::AUX_DAC_A, dac_volts); } else UHD_THROW_INVALID_CODE_PATH(); } void wbx_base::set_rx_gain(double gain, const std::string &name){ assert_has(wbx_rx_gain_ranges.keys(), name, "wbx rx gain name"); if(name == "PGA0"){ boost::uint16_t io_bits = rx_pga0_gain_to_iobits(gain); _rx_gains[name] = gain; //write the new gain to rx gpio outputs this->get_iface()->set_gpio_out(dboard_iface::UNIT_RX, io_bits, RX_ATTN_MASK); } else UHD_THROW_INVALID_CODE_PATH(); } /*********************************************************************** * Tuning **********************************************************************/ double wbx_base::set_lo_freq( dboard_iface::unit_t unit, double target_freq ){ if (wbx_debug) std::cerr << boost::format( "WBX tune: target frequency %f Mhz" ) % (target_freq/1e6) << std::endl; //map prescaler setting to mininmum integer divider (N) values (pg.18 prescaler) static const uhd::dict prescaler_to_min_int_div = map_list_of (0,23) //adf4350_regs_t::PRESCALER_4_5 (1,75) //adf4350_regs_t::PRESCALER_8_9 ; //map rf divider select output dividers to enums static const uhd::dict rfdivsel_to_enum = map_list_of (1, adf4350_regs_t::RF_DIVIDER_SELECT_DIV1) (2, adf4350_regs_t::RF_DIVIDER_SELECT_DIV2) (4, adf4350_regs_t::RF_DIVIDER_SELECT_DIV4) (8, adf4350_regs_t::RF_DIVIDER_SELECT_DIV8) (16, adf4350_regs_t::RF_DIVIDER_SELECT_DIV16) ; double actual_freq, pfd_freq; double ref_freq = this->get_iface()->get_clock_rate(unit); int R=0, BS=0, N=0, FRAC=0, MOD=0; int RFdiv = 1; adf4350_regs_t::reference_divide_by_2_t T = adf4350_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED; adf4350_regs_t::reference_doubler_t D = adf4350_regs_t::REFERENCE_DOUBLER_DISABLED; //Reference doubler for 50% duty cycle // if ref_freq < 12.5MHz enable regs.reference_divide_by_2 if(ref_freq <= 12.5e6) D = adf4350_regs_t::REFERENCE_DOUBLER_ENABLED; //increase RF divider until acceptable VCO frequency //start with target_freq*2 because mixer has divide by 2 double vco_freq = target_freq*2; while (vco_freq < 2.2e9) { vco_freq *= 2; RFdiv *= 2; } //use 8/9 prescaler for vco_freq > 3 GHz (pg.18 prescaler) adf4350_regs_t::prescaler_t prescaler = vco_freq > 3e9 ? adf4350_regs_t::PRESCALER_8_9 : adf4350_regs_t::PRESCALER_4_5; /* * The goal here is to loop though possible R dividers, * band select clock dividers, N (int) dividers, and FRAC * (frac) dividers. * * Calculate the N and F dividers for each set of values. * The loop exists when it meets all of the constraints. * The resulting loop values are loaded into the registers. * * from pg.21 * * f_pfd = f_ref*(1+D)/(R*(1+T)) * f_vco = (N + (FRAC/MOD))*f_pfd * N = f_vco/f_pfd - FRAC/MOD = f_vco*((R*(T+1))/(f_ref*(1+D))) - FRAC/MOD * f_rf = f_vco/RFdiv) * f_actual = f_rf/2 */ for(R = 1; R <= 1023; R+=1){ //PFD input frequency = f_ref/R ... ignoring Reference doubler/divide-by-2 (D & T) pfd_freq = ref_freq*(1+D)/(R*(1+T)); //keep the PFD frequency at or below 25MHz (Loop Filter Bandwidth) if (pfd_freq > 25e6) continue; //ignore fractional part of tuning N = int(std::floor(vco_freq/pfd_freq)); //keep N > minimum int divider requirement if (N < prescaler_to_min_int_div[prescaler]) continue; for(BS=1; BS <= 255; BS+=1){ //keep the band select frequency at or below 100KHz //constraint on band select clock if (pfd_freq/BS > 100e3) continue; goto done_loop; } } done_loop: //Fractional-N calculation MOD = 4095; //max fractional accuracy FRAC = int((vco_freq/pfd_freq - N)*MOD); //Reference divide-by-2 for 50% duty cycle // if R even, move one divide by 2 to to regs.reference_divide_by_2 if(R % 2 == 0){ T = adf4350_regs_t::REFERENCE_DIVIDE_BY_2_ENABLED; R /= 2; } //actual frequency calculation actual_freq = double((N + (double(FRAC)/double(MOD)))*ref_freq*(1+int(D))/(R*(1+int(T)))/RFdiv/2); if (wbx_debug) { std::cerr << boost::format("WBX Intermediates: ref=%0.2f, outdiv=%f, fbdiv=%f") % (ref_freq*(1+int(D))/(R*(1+int(T)))) % double(RFdiv*2) % double(N + double(FRAC)/double(MOD)) << std::endl; std::cerr << boost::format("WBX tune: R=%d, BS=%d, N=%d, FRAC=%d, MOD=%d, T=%d, D=%d, RFdiv=%d, LD=%d" ) % R % BS % N % FRAC % MOD % T % D % RFdiv % get_locked(unit)<< std::endl << boost::format("WBX Frequencies (MHz): REQ=%0.2f, ACT=%0.2f, VCO=%0.2f, PFD=%0.2f, BAND=%0.2f" ) % (target_freq/1e6) % (actual_freq/1e6) % (vco_freq/1e6) % (pfd_freq/1e6) % (pfd_freq/BS/1e6) << std::endl; } //load the register values adf4350_regs_t regs; regs.frac_12_bit = FRAC; regs.int_16_bit = N; regs.mod_12_bit = MOD; regs.prescaler = prescaler; regs.r_counter_10_bit = R; regs.reference_divide_by_2 = T; regs.reference_doubler = D; regs.band_select_clock_div = BS; UHD_ASSERT_THROW(rfdivsel_to_enum.has_key(RFdiv)); regs.rf_divider_select = rfdivsel_to_enum[RFdiv]; if (unit == dboard_iface::UNIT_RX) { freq_range_t rx_lo_5dbm = list_of (range_t(0.05e9, 1.4e9)) ; freq_range_t rx_lo_2dbm = list_of (range_t(1.4e9, 2.2e9)) ; if (actual_freq == rx_lo_5dbm.clip(actual_freq)) regs.output_power = adf4350_regs_t::OUTPUT_POWER_5DBM; if (actual_freq == rx_lo_2dbm.clip(actual_freq)) regs.output_power = adf4350_regs_t::OUTPUT_POWER_2DBM; } else if (unit == dboard_iface::UNIT_TX) { freq_range_t tx_lo_5dbm = list_of (range_t(0.05e9, 1.7e9)) (range_t(1.9e9, 2.2e9)) ; freq_range_t tx_lo_m1dbm = list_of (range_t(1.7e9, 1.9e9)) ; if (actual_freq == tx_lo_5dbm.clip(actual_freq)) regs.output_power = adf4350_regs_t::OUTPUT_POWER_5DBM; if (actual_freq == tx_lo_m1dbm.clip(actual_freq)) regs.output_power = adf4350_regs_t::OUTPUT_POWER_M1DBM; } //write the registers //correct power-up sequence to write registers (5, 4, 3, 2, 1, 0) int addr; for(addr=5; addr>=0; addr--){ if (wbx_debug) std::cerr << boost::format( "WBX SPI Reg (0x%02x): 0x%08x" ) % addr % regs.get_reg(addr) << std::endl; this->get_iface()->write_spi( unit, spi_config_t::EDGE_RISE, regs.get_reg(addr), 32 ); } //return the actual frequency if (wbx_debug) std::cerr << boost::format( "WBX tune: actual frequency %f Mhz" ) % (actual_freq/1e6) << std::endl; return actual_freq; } bool wbx_base::get_locked(dboard_iface::unit_t unit){ return (this->get_iface()->read_gpio(unit) & LOCKDET_MASK) != 0; } /*********************************************************************** * RX Get and Set **********************************************************************/ void wbx_base::rx_get(const wax::obj &key_, wax::obj &val){ named_prop_t key = named_prop_t::extract(key_); //handle the get request conditioned on the key switch(key.as()){ case SUBDEV_PROP_NAME: val = get_rx_id().to_pp_string(); return; case SUBDEV_PROP_OTHERS: val = prop_names_t(); //empty return; case SUBDEV_PROP_GAIN: assert_has(_rx_gains.keys(), key.name, "wbx rx gain name"); val = _rx_gains[key.name]; return; case SUBDEV_PROP_GAIN_RANGE: assert_has(wbx_rx_gain_ranges.keys(), key.name, "wbx rx gain name"); val = wbx_rx_gain_ranges[key.name]; return; case SUBDEV_PROP_GAIN_NAMES: val = prop_names_t(wbx_rx_gain_ranges.keys()); return; case SUBDEV_PROP_FREQ: val = 0.0; return; case SUBDEV_PROP_FREQ_RANGE: val = freq_range_t(0.0, 0.0, 0.0);; return; case SUBDEV_PROP_ANTENNA: val = std::string(""); return; case SUBDEV_PROP_ANTENNA_NAMES: val = prop_names_t(1, ""); return; case SUBDEV_PROP_CONNECTION: val = SUBDEV_CONN_COMPLEX_IQ; return; case SUBDEV_PROP_ENABLED: val = _rx_enabled; return; case SUBDEV_PROP_USE_LO_OFFSET: val = false; return; case SUBDEV_PROP_SENSOR: UHD_ASSERT_THROW(key.name == "lo_locked"); val = sensor_value_t("LO", this->get_locked(dboard_iface::UNIT_RX), "locked", "unlocked"); return; case SUBDEV_PROP_SENSOR_NAMES: val = prop_names_t(1, "lo_locked"); return; case SUBDEV_PROP_BANDWIDTH: val = 2*20.0e6; //20MHz low-pass, we want complex double-sided return; default: UHD_THROW_PROP_GET_ERROR(); } } void wbx_base::rx_set(const wax::obj &key_, const wax::obj &val){ named_prop_t key = named_prop_t::extract(key_); //handle the get request conditioned on the key switch(key.as()){ case SUBDEV_PROP_GAIN: this->set_rx_gain(val.as(), key.name); return; case SUBDEV_PROP_ENABLED: _rx_enabled = val.as(); this->set_rx_enabled(_rx_enabled); return; case SUBDEV_PROP_BANDWIDTH: uhd::warning::post( str(boost::format("WBX: No tunable bandwidth, fixed filtered to 40MHz")) ); return; default: UHD_THROW_PROP_SET_ERROR(); } } /*********************************************************************** * TX Get and Set **********************************************************************/ void wbx_base::tx_get(const wax::obj &key_, wax::obj &val){ named_prop_t key = named_prop_t::extract(key_); //handle the get request conditioned on the key switch(key.as()){ case SUBDEV_PROP_NAME: val = get_tx_id().to_pp_string(); return; case SUBDEV_PROP_OTHERS: val = prop_names_t(); //empty return; case SUBDEV_PROP_GAIN: assert_has(_tx_gains.keys(), key.name, "wbx tx gain name"); val = _tx_gains[key.name]; return; case SUBDEV_PROP_GAIN_RANGE: assert_has(wbx_tx_gain_ranges.keys(), key.name, "wbx tx gain name"); val = wbx_tx_gain_ranges[key.name]; return; case SUBDEV_PROP_GAIN_NAMES: val = prop_names_t(wbx_tx_gain_ranges.keys()); return; case SUBDEV_PROP_FREQ: val = 0.0; return; case SUBDEV_PROP_FREQ_RANGE: val = freq_range_t(0.0, 0.0, 0.0); return; case SUBDEV_PROP_ANTENNA: val = std::string(""); return; case SUBDEV_PROP_ANTENNA_NAMES: val = prop_names_t(1, ""); return; case SUBDEV_PROP_CONNECTION: val = SUBDEV_CONN_COMPLEX_IQ; return; case SUBDEV_PROP_ENABLED: val = _tx_enabled; return; case SUBDEV_PROP_USE_LO_OFFSET: val = false; return; case SUBDEV_PROP_SENSOR: UHD_ASSERT_THROW(key.name == "lo_locked"); val = sensor_value_t("LO", this->get_locked(dboard_iface::UNIT_TX), "locked", "unlocked"); return; case SUBDEV_PROP_SENSOR_NAMES: val = prop_names_t(1, "lo_locked"); return; case SUBDEV_PROP_BANDWIDTH: val = 2*20.0e6; //20MHz low-pass, we want complex double-sided return; default: UHD_THROW_PROP_GET_ERROR(); } } void wbx_base::tx_set(const wax::obj &key_, const wax::obj &val){ named_prop_t key = named_prop_t::extract(key_); //handle the get request conditioned on the key switch(key.as()){ case SUBDEV_PROP_GAIN: this->set_tx_gain(val.as(), key.name); return; case SUBDEV_PROP_ENABLED: _tx_enabled = val.as(); this->set_tx_enabled(_tx_enabled); return; case SUBDEV_PROP_BANDWIDTH: uhd::warning::post( str(boost::format("WBX: No tunable bandwidth, fixed filtered to 40MHz")) ); return; default: UHD_THROW_PROP_SET_ERROR(); } }