// // Copyright 2010 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // static const bool wbx_debug = false; // Common IO Pins #define ANTSW_IO ((1 << 5)|(1 << 15)) // on UNIT_TX, 0 = TX, 1 = RX, on UNIT_RX 0 = main ant, 1 = RX2 #define ADF4350_CE (1 << 3) #define ADF4350_PDBRF (1 << 2) #define ADF4350_MUXOUT (1 << 1) // INPUT!!! #define LOCKDET_MASK (1 << 0) // INPUT!!! // TX IO Pins #define TX_PUP_5V (1 << 7) // enables 5.0V power supply #define TX_PUP_3V (1 << 6) // enables 3.3V supply #define TXMOD_EN (1 << 4) // on UNIT_TX, 1 enables TX Modulator // RX IO Pins #define RX_PUP_5V (1 << 7) // enables 5.0V power supply #define RX_PUP_3V (1 << 6) // enables 3.3V supply #define RXBB_PDB (1 << 4) // on UNIT_RX, 1 powers up RX baseband // RX Attenuator Pins #define RX_ATTN_SHIFT 8 // lsb of RX Attenuator Control #define RX_ATTN_MASK (63 << RX_ATTN_SHIFT) // valid bits of RX Attenuator Control // Mixer functions #define TX_MIXER_ENB (TXMOD_EN|ADF4350_PDBRF) #define TX_MIXER_DIS 0 #define RX_MIXER_ENB (RXBB_PDB|ADF4350_PDBRF) #define RX_MIXER_DIS 0 // Pin functions #define TX_POWER_IO (TX_PUP_5V|TX_PUP_3V) // high enables power supply #define TXIO_MASK (TX_POWER_IO|ANTSW_IO|ADF4350_CE|ADF4350_PDBRF|TXMOD_EN) #define RX_POWER_IO (RX_PUP_5V|RX_PUP_3V) // high enables power supply #define RXIO_MASK (RX_POWER_IO|ANTSW_IO|ADF4350_CE|ADF4350_PDBRF|RXBB_PDB|RX_ATTN_MASK) // Power functions #define TX_POWER_UP (TX_POWER_IO|ADF4350_CE) #define TX_POWER_DOWN 0 #define RX_POWER_UP (RX_POWER_IO|ADF4350_CE) #define RX_POWER_DOWN 0 // Antenna constants #define ANT_TX 0 //the tx line is transmitting #define ANT_RX ANTSW_IO //the tx line is receiving #define ANT_TXRX 0 //the rx line is on txrx #define ANT_RX2 ANTSW_IO //the rx line in on rx2 #define ANT_XX 0 //dont care how the antenna is set #include "adf4350_regs.hpp" #include #include #include #include #include #include #include #include #include #include #include using namespace uhd; using namespace uhd::usrp; using namespace boost::assign; /*********************************************************************** * The WBX dboard **********************************************************************/ static const float _max_rx_pga0_gain = 31.5; static const float _max_tx_pga0_gain = 25; class wbx_xcvr : public xcvr_dboard_base{ public: wbx_xcvr( ctor_args_t args, const freq_range_t &freq_range ); ~wbx_xcvr(void); void rx_get(const wax::obj &key, wax::obj &val); void rx_set(const wax::obj &key, const wax::obj &val); void tx_get(const wax::obj &key, wax::obj &val); void tx_set(const wax::obj &key, const wax::obj &val); private: freq_range_t _freq_range; uhd::dict _div2; double _rx_lo_freq, _tx_lo_freq; std::string _rx_ant; int _rx_pga0_attn_iobits; float _rx_pga0_gain; float _tx_pga0_gain; void set_rx_lo_freq(double freq); void set_tx_lo_freq(double freq); void set_rx_ant(const std::string &ant); void set_rx_pga0_gain(float gain); void set_rx_pga0_attn(float attn); void set_tx_pga0_gain(float gain); void update_atr(void); /*! * Set the LO frequency for the particular dboard unit. * \param unit which unit rx or tx * \param target_freq the desired frequency in Hz * \return the actual frequency in Hz */ double set_lo_freq(dboard_iface::unit_t unit, double target_freq); /*! * Get the lock detect status of the LO. * \param unit which unit rx or tx * \return true for locked */ bool get_locked(dboard_iface::unit_t unit){ return (this->get_iface()->read_gpio(unit) & LOCKDET_MASK) != 0; } }; /*********************************************************************** * Register the WBX dboard (min freq, max freq, rx div2, tx div2) **********************************************************************/ static dboard_base::sptr make_wbx(dboard_base::ctor_args_t args){ return dboard_base::sptr(new wbx_xcvr(args, freq_range_t(50e6, 2220e6))); } UHD_STATIC_BLOCK(reg_wbx_dboards){ dboard_manager::register_dboard(0x0052, &make_wbx, "WBX RX"); dboard_manager::register_dboard(0x0053, &make_wbx, "WBX TX"); } /*********************************************************************** * Structors **********************************************************************/ wbx_xcvr::wbx_xcvr( ctor_args_t args, const freq_range_t &freq_range ) : xcvr_dboard_base(args){ _freq_range = freq_range; //enable the clocks that we need this->get_iface()->set_clock_enabled(dboard_iface::UNIT_TX, true); this->get_iface()->set_clock_enabled(dboard_iface::UNIT_RX, true); //set the gpio directions and atr controls (identically) this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_TX, TXIO_MASK); this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, RXIO_MASK); this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, TXIO_MASK); this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, RXIO_MASK); if (wbx_debug) std::cerr << boost::format( "WBX GPIO Direction: RX: 0x%08x, TX: 0x%08x" ) % RXIO_MASK % TXIO_MASK << std::endl; //set some default values set_rx_lo_freq((_freq_range.min + _freq_range.max)/2.0); set_tx_lo_freq((_freq_range.min + _freq_range.max)/2.0); set_rx_ant("RX2"); set_rx_pga0_gain(0); set_tx_pga0_gain(0); } wbx_xcvr::~wbx_xcvr(void){ /* NOP */ } /*********************************************************************** * Helper Methods **********************************************************************/ void wbx_xcvr::update_atr(void){ //calculate atr pins //setup the tx atr (this does not change with antenna) this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_IDLE, TX_POWER_UP | ANT_XX | TX_MIXER_DIS); this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_RX_ONLY, TX_POWER_UP | ANT_RX | TX_MIXER_DIS); this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_TX_ONLY, TX_POWER_UP | ANT_TX | TX_MIXER_ENB); this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_FULL_DUPLEX, TX_POWER_UP | ANT_TX | TX_MIXER_ENB); //setup the rx atr (this does not change with antenna) this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_IDLE, _rx_pga0_attn_iobits | RX_POWER_UP | ANT_XX | RX_MIXER_DIS); this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_TX_ONLY, _rx_pga0_attn_iobits | RX_POWER_UP | ANT_XX | RX_MIXER_DIS); this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_FULL_DUPLEX, _rx_pga0_attn_iobits | RX_POWER_UP | ANT_RX2| RX_MIXER_ENB); //set the rx atr regs that change with antenna setting this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_RX_ONLY, _rx_pga0_attn_iobits | RX_POWER_UP | RX_MIXER_ENB | ((_rx_ant == "TX/RX")? ANT_TXRX : ANT_RX2)); if (wbx_debug) std::cerr << boost::format( "WBX RXONLY ATR REG: 0x%08x" ) % (_rx_pga0_attn_iobits | RX_POWER_UP | RX_MIXER_ENB | ((_rx_ant == "TX/RX")? ANT_TXRX : ANT_RX2)) << std::endl; } void wbx_xcvr::set_rx_lo_freq(double freq){ _rx_lo_freq = set_lo_freq(dboard_iface::UNIT_RX, freq); } void wbx_xcvr::set_tx_lo_freq(double freq){ _tx_lo_freq = set_lo_freq(dboard_iface::UNIT_TX, freq); } void wbx_xcvr::set_rx_ant(const std::string &ant){ //validate input UHD_ASSERT_THROW(ant == "TX/RX" or ant == "RX2"); //shadow the setting _rx_ant = ant; //write the new antenna setting to atr regs update_atr(); } void wbx_xcvr::set_rx_pga0_gain(float gain){ //clip the input gain = std::clip(gain, 0, _max_rx_pga0_gain); //shadow the setting (does not account for precision loss) _rx_pga0_gain = gain; //convert to attenuation and update iobits for atr set_rx_pga0_attn(_max_rx_pga0_gain - gain); //write the new gain to atr regs update_atr(); } void wbx_xcvr::set_rx_pga0_attn(float attn) { int attn_code = int(floor(attn*2)); _rx_pga0_attn_iobits = ((~attn_code) << RX_ATTN_SHIFT) & RX_ATTN_MASK; if (wbx_debug) std::cerr << boost::format( "WBX Attenuation: %f dB, Code: %d, IO Bits %x, Mask: %x" ) % attn % attn_code % (_rx_pga0_attn_iobits & RX_ATTN_MASK) % RX_ATTN_MASK << std::endl; } void wbx_xcvr::set_tx_pga0_gain(float gain){ //clip the input gain = std::clip(gain, 0, _max_tx_pga0_gain); //voltage level constants static const float max_volts = float(0.5), min_volts = float(1.4); static const float slope = (max_volts-min_volts)/_max_rx_pga0_gain; //calculate the voltage for the aux dac float dac_volts = gain*slope + min_volts; if (wbx_debug) std::cerr << boost::format( "WBX TX Gain: %f dB, dac_volts: %f V" ) % gain % dac_volts << std::endl; //write the new voltage to the aux dac this->get_iface()->write_aux_dac(dboard_iface::UNIT_TX, 0, dac_volts); //shadow the setting (does not account for precision loss) _tx_pga0_gain = gain; } double wbx_xcvr::set_lo_freq( dboard_iface::unit_t unit, double target_freq ){ if (wbx_debug) std::cerr << boost::format( "WBX tune: target frequency %f Mhz" ) % (target_freq/1e6) << std::endl; //clip the input target_freq = std::clip(target_freq, _freq_range.min, _freq_range.max); //map prescaler setting to mininmum integer divider (N) values (pg.18 prescaler) static const uhd::dict prescaler_to_min_int_div = map_list_of (0,23) //adf4350_regs_t::PRESCALER_4_5 (1,75) //adf4350_regs_t::PRESCALER_8_9 ; //map rf divider select output dividers to enums static const uhd::dict rfdivsel_to_enum = map_list_of (1, adf4350_regs_t::RF_DIVIDER_SELECT_DIV1) (2, adf4350_regs_t::RF_DIVIDER_SELECT_DIV2) (4, adf4350_regs_t::RF_DIVIDER_SELECT_DIV4) (8, adf4350_regs_t::RF_DIVIDER_SELECT_DIV8) (16, adf4350_regs_t::RF_DIVIDER_SELECT_DIV16) ; double actual_freq, pfd_freq; double ref_freq = this->get_iface()->get_clock_rate(unit); int R=0, BS=0, N=0, FRAC=0, MOD=0; int RFdiv = 1; adf4350_regs_t::reference_divide_by_2_t T = adf4350_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED; adf4350_regs_t::reference_doubler_t D = adf4350_regs_t::REFERENCE_DOUBLER_DISABLED; //Reference doubler for 50% duty cycle // if ref_freq < 12.5MHz enable regs.reference_divide_by_2 if(ref_freq <= 12.5e6) D = adf4350_regs_t::REFERENCE_DOUBLER_ENABLED; //increase RF divider until acceptable VCO frequency //start with target_freq*2 because mixer has divide by 2 double vco_freq = target_freq*2; while (vco_freq < 2.2e9) { vco_freq *= 2; RFdiv *= 2; } //use 8/9 prescaler for vco_freq > 3 GHz (pg.18 prescaler) adf4350_regs_t::prescaler_t prescaler = vco_freq > 3e9 ? adf4350_regs_t::PRESCALER_8_9 : adf4350_regs_t::PRESCALER_4_5; /* * The goal here is to loop though possible R dividers, * band select clock dividers, N (int) dividers, and FRAC * (frac) dividers. * * Calculate the N and F dividers for each set of values. * The loop exists when it meets all of the constraints. * The resulting loop values are loaded into the registers. * * from pg.21 * * f_pfd = f_ref*(1+D)/(R*(1+T)) * f_vco = (N + (FRAC/MOD))*f_pfd * N = f_vco/f_pfd - FRAC/MOD = f_vco*((R*(T+1))/(f_ref*(1+D))) - FRAC/MOD * f_rf = f_vco/RFdiv) * f_actual = f_rf/2 */ for(R = 1; R <= 1023; R+=1){ //PFD input frequency = f_ref/R ... ignoring Reference doubler/divide-by-2 (D & T) pfd_freq = ref_freq*(1+D)/(R*(1+T)); //keep the PFD frequency at or below 25MHz (Loop Filter Bandwidth) if (pfd_freq > 25e6) continue; //ignore fractional part of tuning N = int(std::floor(vco_freq/pfd_freq)); //keep N > minimum int divider requirement if (N < prescaler_to_min_int_div[prescaler]) continue; for(BS=1; BS <= 255; BS+=1){ //keep the band select frequency at or below 100KHz //constraint on band select clock if (pfd_freq/BS > 100e3) continue; goto done_loop; } } done_loop: //Fractional-N calculation MOD = 4095; //max fractional accuracy FRAC = int((vco_freq/pfd_freq - N)*MOD); //Reference divide-by-2 for 50% duty cycle // if R even, move one divide by 2 to to regs.reference_divide_by_2 if(R % 2 == 0){ T = adf4350_regs_t::REFERENCE_DIVIDE_BY_2_ENABLED; R /= 2; } //actual frequency calculation actual_freq = double((N + (double(FRAC)/double(MOD)))*ref_freq*(1+int(D))/(R*(1+int(T)))/RFdiv/2); if (wbx_debug) { std::cerr << boost::format("WBX Intermediates: ref=%0.2f, outdiv=%f, fbdiv=%f") % (ref_freq*(1+int(D))/(R*(1+int(T)))) % double(RFdiv*2) % double(N + double(FRAC)/double(MOD)) << std::endl; std::cerr << boost::format("WBX tune: R=%d, BS=%d, N=%d, FRAC=%d, MOD=%d, T=%d, D=%d, RFdiv=%d, LD=%d" ) % R % BS % N % FRAC % MOD % T % D % RFdiv % get_locked(unit)<< std::endl << boost::format("WBX Frequencies (MHz): REQ=%0.2f, ACT=%0.2f, VCO=%0.2f, PFD=%0.2f, BAND=%0.2f" ) % (target_freq/1e6) % (actual_freq/1e6) % (vco_freq/1e6) % (pfd_freq/1e6) % (pfd_freq/BS/1e6) << std::endl; } //load the register values adf4350_regs_t regs; regs.frac_12_bit = FRAC; regs.int_16_bit = N; regs.mod_12_bit = MOD; regs.prescaler = prescaler; regs.r_counter_10_bit = R; regs.reference_divide_by_2 = T; regs.reference_doubler = D; regs.band_select_clock_div = BS; regs.rf_divider_select = rfdivsel_to_enum[RFdiv]; //write the registers //correct power-up sequence to write registers (5, 4, 3, 2, 1, 0) int addr; for(addr=5; addr>=0; addr--){ if (wbx_debug) std::cerr << boost::format( "WBX SPI Reg (0x%02x): 0x%08x" ) % addr % regs.get_reg(addr) << std::endl; this->get_iface()->write_spi( unit, spi_config_t::EDGE_RISE, regs.get_reg(addr), 32 ); } //return the actual frequency if (wbx_debug) std::cerr << boost::format( "WBX tune: actual frequency %f Mhz" ) % (actual_freq/1e6) << std::endl; return actual_freq; } /*********************************************************************** * RX Get and Set **********************************************************************/ void wbx_xcvr::rx_get(const wax::obj &key_, wax::obj &val){ wax::obj key; std::string name; boost::tie(key, name) = extract_named_prop(key_); //handle the get request conditioned on the key switch(key.as()){ case SUBDEV_PROP_NAME: val = get_rx_id().to_pp_string(); return; case SUBDEV_PROP_OTHERS: val = prop_names_t(); //empty return; case SUBDEV_PROP_GAIN: UHD_ASSERT_THROW(name == "PGA0"); val = _rx_pga0_gain; return; case SUBDEV_PROP_GAIN_RANGE: UHD_ASSERT_THROW(name == "PGA0"); val = gain_range_t(0, _max_rx_pga0_gain, float(0.5)); return; case SUBDEV_PROP_GAIN_NAMES: val = prop_names_t(1, "PGA0"); return; case SUBDEV_PROP_FREQ: val = _rx_lo_freq; return; case SUBDEV_PROP_FREQ_RANGE: val = _freq_range; return; case SUBDEV_PROP_ANTENNA: val = _rx_ant; return; case SUBDEV_PROP_ANTENNA_NAMES:{ prop_names_t ants = list_of("TX/RX")("RX2"); val = ants; } return; case SUBDEV_PROP_QUADRATURE: val = true; return; case SUBDEV_PROP_IQ_SWAPPED: val = false; return; case SUBDEV_PROP_SPECTRUM_INVERTED: val = false; return; case SUBDEV_PROP_USE_LO_OFFSET: val = false; return; case SUBDEV_PROP_LO_LOCKED: val = this->get_locked(dboard_iface::UNIT_RX); return; default: UHD_THROW_PROP_GET_ERROR(); } } void wbx_xcvr::rx_set(const wax::obj &key_, const wax::obj &val){ wax::obj key; std::string name; boost::tie(key, name) = extract_named_prop(key_); //handle the get request conditioned on the key switch(key.as()){ case SUBDEV_PROP_FREQ: set_rx_lo_freq(val.as()); return; case SUBDEV_PROP_GAIN: UHD_ASSERT_THROW(name == "PGA0"); set_rx_pga0_gain(val.as()); return; case SUBDEV_PROP_ANTENNA: set_rx_ant(val.as()); return; default: UHD_THROW_PROP_SET_ERROR(); } } /*********************************************************************** * TX Get and Set **********************************************************************/ void wbx_xcvr::tx_get(const wax::obj &key_, wax::obj &val){ wax::obj key; std::string name; boost::tie(key, name) = extract_named_prop(key_); //handle the get request conditioned on the key switch(key.as()){ case SUBDEV_PROP_NAME: val = get_tx_id().to_pp_string(); return; case SUBDEV_PROP_OTHERS: val = prop_names_t(); //empty return; case SUBDEV_PROP_GAIN: UHD_ASSERT_THROW(name == "PGA0"); val = _tx_pga0_gain; return; case SUBDEV_PROP_GAIN_RANGE: UHD_ASSERT_THROW(name == "PGA0"); val = gain_range_t(0, _max_tx_pga0_gain, float(0.05)); return; case SUBDEV_PROP_GAIN_NAMES: val = prop_names_t(1, "PGA0"); return; case SUBDEV_PROP_FREQ: val = _tx_lo_freq; return; case SUBDEV_PROP_FREQ_RANGE: val = _freq_range; return; case SUBDEV_PROP_ANTENNA: val = std::string("TX/RX"); return; case SUBDEV_PROP_ANTENNA_NAMES: val = prop_names_t(1, "TX/RX"); return; case SUBDEV_PROP_QUADRATURE: val = true; return; case SUBDEV_PROP_IQ_SWAPPED: val = false; return; case SUBDEV_PROP_SPECTRUM_INVERTED: val = false; return; case SUBDEV_PROP_USE_LO_OFFSET: val = false; return; case SUBDEV_PROP_LO_LOCKED: val = this->get_locked(dboard_iface::UNIT_TX); return; default: UHD_THROW_PROP_GET_ERROR(); } } void wbx_xcvr::tx_set(const wax::obj &key_, const wax::obj &val){ wax::obj key; std::string name; boost::tie(key, name) = extract_named_prop(key_); //handle the get request conditioned on the key switch(key.as()){ case SUBDEV_PROP_FREQ: set_tx_lo_freq(val.as()); return; case SUBDEV_PROP_GAIN: UHD_ASSERT_THROW(name == "PGA0"); set_tx_pga0_gain(val.as()); return; case SUBDEV_PROP_ANTENNA: //its always set to tx/rx, so we only allow this value UHD_ASSERT_THROW(val.as() == "TX/RX"); return; default: UHD_THROW_PROP_SET_ERROR(); } }