//
// Copyright 2010-2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
// No RX IO Pins Used
// RX IO Functions
//ADC/DAC functions:
//DAC 1: RF AGC
//DAC 2: IF AGC
//min freq: 50e6
//max freq: 860e6
//gain range: [0:1dB:115dB]
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace uhd;
using namespace uhd::usrp;
using namespace boost::assign;
/***********************************************************************
* The tvrx constants
**********************************************************************/
static const freq_range_t tvrx_freq_range(50e6, 860e6);
static const std::vector tvrx_antennas = list_of("RX");
static const uhd::dict tvrx_freq_ranges = map_list_of
("VHFLO", freq_range_t(50e6, 158e6))
("VHFHI", freq_range_t(158e6, 454e6))
("UHF" , freq_range_t(454e6, 860e6))
;
static const boost::array vhflo_gains_db =
{{-6.00000, -6.00000, -6.00000, -4.00000, 0.00000,
5.00000, 10.00000, 17.40000, 26.30000, 36.00000,
43.00000, 48.00000, 49.50000, 50.10000, 50.30000,
50.30000, 50.30000}};
static const boost::array vhfhi_gains_db =
{{-13.3000, -13.3000, -13.3000, -1.0000, 7.7000,
11.0000, 14.7000, 19.3000, 26.1000, 36.0000,
42.7000, 46.0000, 47.0000, 47.8000, 48.2000,
48.2000, 48.2000}};
static const boost::array uhf_gains_db =
{{-8.0000, -8.0000, -7.0000, 4.0000, 10.2000,
14.5000, 17.5000, 20.0000, 24.5000, 30.8000,
37.0000, 39.8000, 40.7000, 41.6000, 42.6000,
43.2000, 43.8000}};
static const boost::array tvrx_if_gains_db =
{{-1.50000, -1.50000, -1.50000, -1.00000, 0.20000,
2.10000, 4.30000, 6.40000, 9.00000, 12.00000,
14.80000, 18.20000, 26.10000, 32.50000, 32.50000,
32.50000, 32.50000}};
//gain linearization data
//this is from the datasheet and is dB vs. volts (below)
//i tried to curve fit this, but it's really just so nonlinear that you'd
//need dang near as many coefficients as to just map it like this and interp.
//these numbers are culled from the 4937DI5 datasheet and are probably totally inaccurate
//but if it's better than the old linear fit i'm happy
static const uhd::dict > tvrx_rf_gains_db = map_list_of
("VHFLO", vhflo_gains_db)
("VHFHI", vhfhi_gains_db)
("UHF" , uhf_gains_db)
;
//sample voltages for the above points
static const boost::array tvrx_gains_volts =
{{0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0}};
static uhd::dict get_tvrx_gain_ranges(void) {
double rfmax = 0.0, rfmin = FLT_MAX;
BOOST_FOREACH(const std::string range, tvrx_rf_gains_db.keys()) {
double my_max = tvrx_rf_gains_db[range].back(); //we're assuming it's monotonic
double my_min = tvrx_rf_gains_db[range].front(); //if it's not this is wrong wrong wrong
if(my_max > rfmax) rfmax = my_max;
if(my_min < rfmin) rfmin = my_min;
}
double ifmin = tvrx_if_gains_db.front();
double ifmax = tvrx_if_gains_db.back();
return map_list_of
("RF", gain_range_t(rfmin, rfmax, (rfmax-rfmin)/4096.0))
("IF", gain_range_t(ifmin, ifmax, (ifmax-ifmin)/4096.0))
;
}
static const double opamp_gain = 1.22; //onboard DAC opamp gain
static const double tvrx_if_freq = 43.75e6; //IF freq of TVRX module
static const boost::uint16_t reference_divider = 640; //clock reference divider to use
static const double reference_freq = 4.0e6;
/***********************************************************************
* The tvrx dboard class
**********************************************************************/
class tvrx : public rx_dboard_base{
public:
tvrx(ctor_args_t args);
~tvrx(void);
private:
uhd::dict _gains;
double _lo_freq;
tuner_4937di5_regs_t _tuner_4937di5_regs;
boost::uint8_t _tuner_4937di5_addr(void){
return (this->get_iface()->get_special_props().mangle_i2c_addrs)? 0x61 : 0x60; //ok really? we could rename that call
};
double set_gain(double gain, const std::string &name);
double set_freq(double freq);
void update_regs(void){
byte_vector_t regs_vector(4);
//get the register data
for(int i=0; i<4; i++){
regs_vector[i] = _tuner_4937di5_regs.get_reg(i);
UHD_LOGV(often) << boost::format(
"tvrx: send reg 0x%02x, value 0x%04x"
) % int(i) % int(regs_vector[i]) << std::endl;
}
//send the data
this->get_iface()->write_i2c(
_tuner_4937di5_addr(), regs_vector
);
}
};
/***********************************************************************
* Register the tvrx dboard
**********************************************************************/
static dboard_base::sptr make_tvrx(dboard_base::ctor_args_t args){
return dboard_base::sptr(new tvrx(args));
}
UHD_STATIC_BLOCK(reg_tvrx_dboard){
//register the factory function for the rx dbid
dboard_manager::register_dboard(0x0040, &make_tvrx, "TVRX");
}
/***********************************************************************
* Structors
**********************************************************************/
tvrx::tvrx(ctor_args_t args) : rx_dboard_base(args){
////////////////////////////////////////////////////////////////////
// Register properties
////////////////////////////////////////////////////////////////////
this->get_rx_subtree()->create("name")
.set(get_rx_id().to_pp_string());
BOOST_FOREACH(const std::string &name, get_tvrx_gain_ranges().keys()){
this->get_rx_subtree()->create("gains/"+name+"/value")
.coerce(boost::bind(&tvrx::set_gain, this, _1, name))
.set(get_tvrx_gain_ranges()[name].start());
this->get_rx_subtree()->create("gains/"+name+"/range")
.set(get_tvrx_gain_ranges()[name]);
}
this->get_rx_subtree()->create("freq/value")
.coerce(boost::bind(&tvrx::set_freq, this, _1))
.set(tvrx_freq_range.start());
this->get_rx_subtree()->create("freq/range")
.set(tvrx_freq_range);
this->get_rx_subtree()->create("antenna/value")
.set(tvrx_antennas.at(0));
this->get_rx_subtree()->create >("antenna/options")
.set(tvrx_antennas);
this->get_rx_subtree()->create("connection")
.set("I");
this->get_rx_subtree()->create("enabled")
.set(true); //always enabled
this->get_rx_subtree()->create("use_lo_offset")
.set(false);
this->get_rx_subtree()->create("bandwidth/value")
.set(6.0e6);
this->get_rx_subtree()->create("bandwidth/range")
.set(freq_range_t(6.0e6, 6.0e6));
//enable only the clocks we need
this->get_iface()->set_clock_enabled(dboard_iface::UNIT_RX, true);
//set the gpio directions and atr controls (identically)
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, 0x0); // All unused in atr
if (this->get_iface()->get_special_props().soft_clock_divider){
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, 0x1); // GPIO0 is clock
}
else{
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, 0x0); // All Inputs
}
//send initial register settings if necessary
//set default freq
_lo_freq = tvrx_freq_range.start() + tvrx_if_freq; //init _lo_freq to a sane default
set_freq(tvrx_freq_range.start());
//set default gains
BOOST_FOREACH(const std::string &name, get_tvrx_gain_ranges().keys()){
set_gain(get_tvrx_gain_ranges()[name].start(), name);
}
}
tvrx::~tvrx(void){
}
/*! Return a string corresponding to the relevant band
* \param freq the frequency of interest
* \return a string corresponding to the band
*/
static std::string get_band(double freq) {
BOOST_FOREACH(const std::string &band, tvrx_freq_ranges.keys()) {
if(freq >= tvrx_freq_ranges[band].start() && freq <= tvrx_freq_ranges[band].stop()){
UHD_LOGV(often) << "Band: " << band << std::endl;
return band;
}
}
UHD_THROW_INVALID_CODE_PATH();
}
/***********************************************************************
* Gain Handling
**********************************************************************/
/*!
* Execute a linear interpolation to find the voltage corresponding to a desired gain
* \param gain the desired gain in dB
* \param db_vector the vector of dB readings
* \param volts_vector the corresponding vector of voltages db_vector was sampled at
* \return a voltage to feed the TVRX analog gain
*/
static double gain_interp(double gain, boost::array db_vector, boost::array volts_vector) {
double volts;
gain = uhd::clip(gain, db_vector.front(), db_vector.back()); //let's not get carried away here
boost::uint8_t gain_step = 0;
//find which bin we're in
for(size_t i = 0; i < db_vector.size()-1; i++) {
if(gain >= db_vector[i] && gain <= db_vector[i+1]) gain_step = i;
}
//find the current slope for linear interpolation
double slope = (volts_vector[gain_step + 1] - volts_vector[gain_step])
/ (db_vector[gain_step + 1] - db_vector[gain_step]);
//the problem here is that for gains approaching the maximum, the voltage slope becomes infinite
//i.e., a small change in gain requires an infinite change in voltage
//to cope, we limit the slope
if(slope == std::numeric_limits::infinity())
return volts_vector[gain_step];
//use the volts per dB slope to find the final interpolated voltage
volts = volts_vector[gain_step] + (slope * (gain - db_vector[gain_step]));
UHD_LOGV(often) << "Gain interp: gain: " << gain << ", gain_step: " << int(gain_step) << ", slope: " << slope << ", volts: " << volts << std::endl;
return volts;
}
/*!
* Convert a requested gain for the RF gain into a DAC voltage.
* The gain passed into the function will be set to the actual value.
* \param gain the requested gain in dB
* \return dac voltage value
*/
static double rf_gain_to_voltage(double gain, double lo_freq){
//clip the input
gain = get_tvrx_gain_ranges()["RF"].clip(gain);
//first we need to find out what band we're in, because gains are different across different bands
std::string band = get_band(lo_freq - tvrx_if_freq);
//this is the voltage at the TVRX gain input
double gain_volts = gain_interp(gain, tvrx_rf_gains_db[band], tvrx_gains_volts);
//this is the voltage at the USRP DAC output
double dac_volts = gain_volts / opamp_gain;
dac_volts = uhd::clip(dac_volts, 0.0, 3.3);
UHD_LOGV(often) << boost::format(
"tvrx RF AGC gain: %f dB, dac_volts: %f V"
) % gain % dac_volts << std::endl;
return dac_volts;
}
/*!
* Convert a requested gain for the IF gain into a DAC voltage.
* The gain passed into the function will be set to the actual value.
* \param gain the requested gain in dB
* \return dac voltage value
*/
static double if_gain_to_voltage(double gain){
//clip the input
gain = get_tvrx_gain_ranges()["IF"].clip(gain);
double gain_volts = gain_interp(gain, tvrx_if_gains_db, tvrx_gains_volts);
double dac_volts = gain_volts / opamp_gain;
dac_volts = uhd::clip(dac_volts, 0.0, 3.3);
UHD_LOGV(often) << boost::format(
"tvrx IF AGC gain: %f dB, dac_volts: %f V"
) % gain % dac_volts << std::endl;
return dac_volts;
}
double tvrx::set_gain(double gain, const std::string &name){
assert_has(get_tvrx_gain_ranges().keys(), name, "tvrx gain name");
if (name == "RF"){
this->get_iface()->write_aux_dac(dboard_iface::UNIT_RX, dboard_iface::AUX_DAC_B, rf_gain_to_voltage(gain, _lo_freq));
}
else if(name == "IF"){
this->get_iface()->write_aux_dac(dboard_iface::UNIT_RX, dboard_iface::AUX_DAC_A, if_gain_to_voltage(gain));
}
else UHD_THROW_INVALID_CODE_PATH();
_gains[name] = gain;
return gain;
}
/*!
* Set the tuner to center the desired frequency at 43.75MHz
* \param freq the requested frequency
*/
double tvrx::set_freq(double freq) {
freq = tvrx_freq_range.clip(freq);
std::string prev_band = get_band(_lo_freq - tvrx_if_freq);
std::string new_band = get_band(freq);
double target_lo_freq = freq + tvrx_if_freq; //the desired LO freq for high-side mixing
double f_ref = reference_freq / double(reference_divider); //your tuning step size
int divisor = int((target_lo_freq + (f_ref * 4.0)) / (f_ref * 8)); //the divisor we'll use
double actual_lo_freq = (f_ref * 8 * divisor); //the LO freq we'll actually get
if((divisor & ~0x7fff)) UHD_THROW_INVALID_CODE_PATH();
//now we update the registers
_tuner_4937di5_regs.db1 = (divisor >> 8) & 0xff;
_tuner_4937di5_regs.db2 = divisor & 0xff;
if(new_band == "VHFLO") _tuner_4937di5_regs.bandsel = tuner_4937di5_regs_t::BANDSEL_VHFLO;
else if(new_band == "VHFHI") _tuner_4937di5_regs.bandsel = tuner_4937di5_regs_t::BANDSEL_VHFHI;
else if(new_band == "UHF") _tuner_4937di5_regs.bandsel = tuner_4937di5_regs_t::BANDSEL_UHF;
else UHD_THROW_INVALID_CODE_PATH();
_tuner_4937di5_regs.power = tuner_4937di5_regs_t::POWER_OFF;
update_regs();
//ok don't forget to reset RF gain here if the new band != the old band
//we do this because the gains are different for different band settings
//not FAR off, but we do this to be consistent
if(prev_band != new_band) set_gain(_gains["RF"], "RF");
UHD_LOGV(often) << boost::format("set_freq: target LO: %f f_ref: %f divisor: %i actual LO: %f") % target_lo_freq % f_ref % divisor % actual_lo_freq << std::endl;
_lo_freq = actual_lo_freq; //for rx props
return _lo_freq;
}