// // Copyright 2011-2012 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "adf4350_regs.hpp" #include "db_sbx_common.hpp" using namespace uhd; using namespace uhd::usrp; using namespace boost::assign; /*********************************************************************** * Structors **********************************************************************/ sbx_xcvr::sbx_version3::sbx_version3(sbx_xcvr *_self_sbx_xcvr) { //register the handle to our base SBX class self_base = _self_sbx_xcvr; } sbx_xcvr::sbx_version3::~sbx_version3(void){ /* NOP */ } /*********************************************************************** * Tuning **********************************************************************/ double sbx_xcvr::sbx_version3::set_lo_freq(dboard_iface::unit_t unit, double target_freq) { UHD_LOGV(often) << boost::format( "SBX tune: target frequency %f Mhz" ) % (target_freq/1e6) << std::endl; //clip the input target_freq = sbx_freq_range.clip(target_freq); //map prescaler setting to mininmum integer divider (N) values (pg.18 prescaler) static const uhd::dict prescaler_to_min_int_div = map_list_of (0,23) //adf4350_regs_t::PRESCALER_4_5 (1,75) //adf4350_regs_t::PRESCALER_8_9 ; //map rf divider select output dividers to enums static const uhd::dict rfdivsel_to_enum = map_list_of (1, adf4350_regs_t::RF_DIVIDER_SELECT_DIV1) (2, adf4350_regs_t::RF_DIVIDER_SELECT_DIV2) (4, adf4350_regs_t::RF_DIVIDER_SELECT_DIV4) (8, adf4350_regs_t::RF_DIVIDER_SELECT_DIV8) (16, adf4350_regs_t::RF_DIVIDER_SELECT_DIV16) ; double actual_freq, pfd_freq; double ref_freq = self_base->get_iface()->get_clock_rate(unit); int R=0, BS=0, N=0, FRAC=0, MOD=0; int RFdiv = 1; adf4350_regs_t::reference_divide_by_2_t T = adf4350_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED; adf4350_regs_t::reference_doubler_t D = adf4350_regs_t::REFERENCE_DOUBLER_DISABLED; //Reference doubler for 50% duty cycle // if ref_freq < 12.5MHz enable regs.reference_divide_by_2 if(ref_freq <= 12.5e6) D = adf4350_regs_t::REFERENCE_DOUBLER_ENABLED; //increase RF divider until acceptable VCO frequency double vco_freq = target_freq; while (vco_freq < 2.2e9) { vco_freq *= 2; RFdiv *= 2; } //use 8/9 prescaler for vco_freq > 3 GHz (pg.18 prescaler) adf4350_regs_t::prescaler_t prescaler = target_freq > 3e9 ? adf4350_regs_t::PRESCALER_8_9 : adf4350_regs_t::PRESCALER_4_5; /* * The goal here is to loop though possible R dividers, * band select clock dividers, N (int) dividers, and FRAC * (frac) dividers. * * Calculate the N and F dividers for each set of values. * The loop exits when it meets all of the constraints. * The resulting loop values are loaded into the registers. * * from pg.21 * * f_pfd = f_ref*(1+D)/(R*(1+T)) * f_vco = (N + (FRAC/MOD))*f_pfd * N = f_vco/f_pfd - FRAC/MOD = f_vco*((R*(T+1))/(f_ref*(1+D))) - FRAC/MOD * f_rf = f_vco/RFdiv) * f_actual = f_rf/2 */ for(R = 1; R <= 1023; R+=1){ //PFD input frequency = f_ref/R ... ignoring Reference doubler/divide-by-2 (D & T) pfd_freq = ref_freq*(1+D)/(R*(1+T)); //keep the PFD frequency at or below 25MHz (Loop Filter Bandwidth) if (pfd_freq > 25e6) continue; //ignore fractional part of tuning N = int(std::floor(target_freq/pfd_freq)); //keep N > minimum int divider requirement if (N < prescaler_to_min_int_div[prescaler]) continue; for(BS=1; BS <= 255; BS+=1){ //keep the band select frequency at or below 100KHz //constraint on band select clock if (pfd_freq/BS > 100e3) continue; goto done_loop; } } done_loop: //Fractional-N calculation MOD = 4095; //max fractional accuracy FRAC = int((target_freq/pfd_freq - N)*MOD); //Reference divide-by-2 for 50% duty cycle // if R even, move one divide by 2 to to regs.reference_divide_by_2 if(R % 2 == 0){ T = adf4350_regs_t::REFERENCE_DIVIDE_BY_2_ENABLED; R /= 2; } //actual frequency calculation actual_freq = double((N + (double(FRAC)/double(MOD)))*ref_freq*(1+int(D))/(R*(1+int(T)))); UHD_LOGV(often) << boost::format("SBX Intermediates: ref=%0.2f, outdiv=%f, fbdiv=%f") % (ref_freq*(1+int(D))/(R*(1+int(T)))) % double(RFdiv*2) % double(N + double(FRAC)/double(MOD)) << std::endl << boost::format("SBX tune: R=%d, BS=%d, N=%d, FRAC=%d, MOD=%d, T=%d, D=%d, RFdiv=%d" ) % R % BS % N % FRAC % MOD % T % D % RFdiv << std::endl << boost::format("SBX Frequencies (MHz): REQ=%0.2f, ACT=%0.2f, VCO=%0.2f, PFD=%0.2f, BAND=%0.2f" ) % (target_freq/1e6) % (actual_freq/1e6) % (vco_freq/1e6) % (pfd_freq/1e6) % (pfd_freq/BS/1e6) << std::endl; //load the register values adf4350_regs_t regs; if ((unit == dboard_iface::UNIT_TX) and (actual_freq == sbx_tx_lo_2dbm.clip(actual_freq))) regs.output_power = adf4350_regs_t::OUTPUT_POWER_2DBM; else regs.output_power = adf4350_regs_t::OUTPUT_POWER_5DBM; regs.frac_12_bit = FRAC; regs.int_16_bit = N; regs.mod_12_bit = MOD; regs.clock_divider_12_bit = std::max(1, int(std::ceil(400e-6*pfd_freq/MOD))); regs.feedback_select = adf4350_regs_t::FEEDBACK_SELECT_DIVIDED; regs.clock_div_mode = adf4350_regs_t::CLOCK_DIV_MODE_RESYNC_ENABLE; regs.prescaler = prescaler; regs.r_counter_10_bit = R; regs.reference_divide_by_2 = T; regs.reference_doubler = D; regs.band_select_clock_div = BS; UHD_ASSERT_THROW(rfdivsel_to_enum.has_key(RFdiv)); regs.rf_divider_select = rfdivsel_to_enum[RFdiv]; //reset the N and R counter regs.counter_reset = adf4350_regs_t::COUNTER_RESET_ENABLED; self_base->get_iface()->write_spi(unit, spi_config_t::EDGE_RISE, regs.get_reg(2), 32); regs.counter_reset = adf4350_regs_t::COUNTER_RESET_DISABLED; //write the registers //correct power-up sequence to write registers (5, 4, 3, 2, 1, 0) int addr; for(addr=5; addr>=0; addr--){ UHD_LOGV(often) << boost::format( "SBX SPI Reg (0x%02x): 0x%08x" ) % addr % regs.get_reg(addr) << std::endl; self_base->get_iface()->write_spi( unit, spi_config_t::EDGE_RISE, regs.get_reg(addr), 32 ); } //return the actual frequency UHD_LOGV(often) << boost::format( "SBX tune: actual frequency %f Mhz" ) % (actual_freq/1e6) << std::endl; return actual_freq; }