// // Copyright 2011 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // Common IO Pins #define LO_LPF_EN (1 << 15) #define ADF4350_CE (1 << 3) #define ADF4350_PDBRF (1 << 2) #define ADF4350_MUXOUT (1 << 1) // INPUT!!! #define LOCKDET_MASK (1 << 0) // INPUT!!! // TX IO Pins #define TRSW (1 << 14) // 0 = TX, 1 = RX #define TX_LED_TXRX (1 << 7) // LED for TX Antenna Selection TX/RX #define TX_LED_LD (1 << 6) // LED for TX Lock Detect #define DIS_POWER_TX (1 << 5) // on UNIT_TX, 0 powers up TX #define TX_ENABLE (1 << 4) // on UNIT_TX, 0 disables TX Mixer // RX IO Pins #define LNASW (1 << 14) // 0 = TX/RX, 1 = RX2 #define RX_LED_RX1RX2 (1 << 7) // LED for RX Antenna Selection RX1/RX2 #define RX_LED_LD (1 << 6) // LED for RX Lock Detect #define DIS_POWER_RX (1 << 5) // on UNIT_RX, 0 powers up RX #define RX_DISABLE (1 << 4) // on UNIT_RX, 1 disables RX Mixer and Baseband // RX Attenuator Pins #define RX_ATTN_SHIFT 8 // lsb of RX Attenuator Control #define RX_ATTN_MASK (63 << RX_ATTN_SHIFT) // valid bits of RX Attenuator Control // TX Attenuator Pins #define TX_ATTN_SHIFT 8 // lsb of RX Attenuator Control #define TX_ATTN_MASK (63 << TX_ATTN_SHIFT) // valid bits of RX Attenuator Control // Mixer functions #define TX_MIXER_ENB (ADF4350_PDBRF) #define TX_MIXER_DIS 0 #define RX_MIXER_ENB (ADF4350_PDBRF) #define RX_MIXER_DIS 0 // Pin functions #define TX_LED_IO (TX_LED_TXRX|TX_LED_LD) // LED gpio lines, pull down for LED #define TXIO_MASK (LO_LPF_EN|TRSW|ADF4350_CE|ADF4350_PDBRF|TX_ATTN_MASK|DIS_POWER_TX|TX_ENABLE) #define RX_LED_IO (RX_LED_RX1RX2|RX_LED_LD) // LED gpio lines, pull down for LED #define RXIO_MASK (LO_LPF_EN|LNASW|ADF4350_CE|ADF4350_PDBRF|RX_ATTN_MASK|DIS_POWER_RX|RX_DISABLE) // Power functions #define TX_POWER_UP (ADF4350_CE|TX_ENABLE) #define TX_POWER_DOWN (DIS_POWER_TX) #define RX_POWER_UP (ADF4350_CE) #define RX_POWER_DOWN (DIS_POWER_RX) // Antenna constants #define ANT_TX TRSW //the tx line is transmitting #define ANT_RX 0 //the tx line is receiving #define ANT_TXRX 0 //the rx line is on txrx #define ANT_RX2 LNASW //the rx line in on rx2 #define ANT_XX LNASW //dont care how the antenna is set #include "adf4350_regs.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace uhd; using namespace uhd::usrp; using namespace boost::assign; /*********************************************************************** * The SBX dboard constants **********************************************************************/ static const bool sbx_debug = false; static const freq_range_t sbx_freq_range(68.75e6, 4.4e9); static const freq_range_t sbx_tx_lo_2dbm = list_of (range_t(0.35e9, 0.37e9)) ; static const freq_range_t sbx_enable_tx_lo_filter = list_of (range_t(0.4e9, 1.5e9)) ; static const freq_range_t sbx_enable_rx_lo_filter = list_of (range_t(0.4e9, 1.5e9)) ; static const prop_names_t sbx_tx_antennas = list_of("TX/RX"); static const prop_names_t sbx_rx_antennas = list_of("TX/RX")("RX2"); static const uhd::dict sbx_tx_gain_ranges = map_list_of ("PGA0", gain_range_t(0, 31.5, double(0.5))) ; static const uhd::dict sbx_rx_gain_ranges = map_list_of ("PGA0", gain_range_t(0, 31.5, double(0.5))) ; /*********************************************************************** * The SBX dboard **********************************************************************/ class sbx_xcvr : public xcvr_dboard_base{ public: sbx_xcvr(ctor_args_t args); ~sbx_xcvr(void); void rx_get(const wax::obj &key, wax::obj &val); void rx_set(const wax::obj &key, const wax::obj &val); void tx_get(const wax::obj &key, wax::obj &val); void tx_set(const wax::obj &key, const wax::obj &val); private: uhd::dict _tx_gains, _rx_gains; double _rx_lo_freq, _tx_lo_freq; std::string _tx_ant, _rx_ant; void set_rx_lo_freq(double freq); void set_tx_lo_freq(double freq); void set_rx_ant(const std::string &ant); void set_tx_ant(const std::string &ant); void set_rx_gain(double gain, const std::string &name); void set_tx_gain(double gain, const std::string &name); void update_atr(void); /*! * Set the LO frequency for the particular dboard unit. * \param unit which unit rx or tx * \param target_freq the desired frequency in Hz * \return the actual frequency in Hz */ double set_lo_freq(dboard_iface::unit_t unit, double target_freq); /*! * Get the lock detect status of the LO. * \param unit which unit rx or tx * \return true for locked */ bool get_locked(dboard_iface::unit_t unit){ return (this->get_iface()->read_gpio(unit) & LOCKDET_MASK) != 0; } /*! * Flash the LEDs */ void flash_leds(void) { //Remove LED gpios from ATR control temporarily and set to outputs this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_TX, TXIO_MASK); this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, RXIO_MASK); this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, (TXIO_MASK|RX_LED_IO)); this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, (RXIO_MASK|RX_LED_IO)); /* //flash All LEDs for (int i = 0; i < 3; i++) { this->get_iface()->set_gpio_out(dboard_iface::UNIT_RX, RX_LED_IO, RX_LED_IO); this->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, TX_LED_IO, TX_LED_IO); boost::this_thread::sleep(boost::posix_time::milliseconds(100)); this->get_iface()->set_gpio_out(dboard_iface::UNIT_RX, 0, RX_LED_IO); this->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, 0, TX_LED_IO); boost::this_thread::sleep(boost::posix_time::milliseconds(100)); } */ this->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, TX_LED_LD, TX_LED_IO); boost::this_thread::sleep(boost::posix_time::milliseconds(100)); this->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, TX_LED_TXRX|TX_LED_LD, TX_LED_IO); boost::this_thread::sleep(boost::posix_time::milliseconds(100)); this->get_iface()->set_gpio_out(dboard_iface::UNIT_RX, RX_LED_LD, RX_LED_IO); boost::this_thread::sleep(boost::posix_time::milliseconds(100)); this->get_iface()->set_gpio_out(dboard_iface::UNIT_RX, RX_LED_RX1RX2|RX_LED_LD, RX_LED_IO); boost::this_thread::sleep(boost::posix_time::milliseconds(100)); this->get_iface()->set_gpio_out(dboard_iface::UNIT_RX, RX_LED_LD, RX_LED_IO); boost::this_thread::sleep(boost::posix_time::milliseconds(100)); this->get_iface()->set_gpio_out(dboard_iface::UNIT_RX, 0, RX_LED_IO); boost::this_thread::sleep(boost::posix_time::milliseconds(100)); this->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, TX_LED_LD, TX_LED_IO); boost::this_thread::sleep(boost::posix_time::milliseconds(100)); this->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, 0, TX_LED_IO); boost::this_thread::sleep(boost::posix_time::milliseconds(100)); /* //flash All LEDs for (int i = 0; i < 3; i++) { this->get_iface()->set_gpio_out(dboard_iface::UNIT_RX, 0, RX_LED_IO); this->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, 0, TX_LED_IO); boost::this_thread::sleep(boost::posix_time::milliseconds(100)); this->get_iface()->set_gpio_out(dboard_iface::UNIT_RX, RX_LED_IO, RX_LED_IO); this->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, TX_LED_IO, TX_LED_IO); boost::this_thread::sleep(boost::posix_time::milliseconds(100)); } */ //Put LED gpios back in ATR control and update atr this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_TX, (TXIO_MASK|TX_LED_IO)); this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, (RXIO_MASK|RX_LED_IO)); this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, (TXIO_MASK|TX_LED_IO)); this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, (RXIO_MASK|RX_LED_IO)); } }; /*********************************************************************** * Register the SBX dboard (min freq, max freq, rx div2, tx div2) **********************************************************************/ static dboard_base::sptr make_sbx(dboard_base::ctor_args_t args){ return dboard_base::sptr(new sbx_xcvr(args)); } UHD_STATIC_BLOCK(reg_sbx_dboards){ dboard_manager::register_dboard(0x0054, 0x0055, &make_sbx, "SBX"); } /*********************************************************************** * Structors **********************************************************************/ sbx_xcvr::sbx_xcvr(ctor_args_t args) : xcvr_dboard_base(args){ //enable the clocks that we need this->get_iface()->set_clock_enabled(dboard_iface::UNIT_TX, true); this->get_iface()->set_clock_enabled(dboard_iface::UNIT_RX, true); //set the gpio directions and atr controls (identically) this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_TX, (TXIO_MASK|TX_LED_IO)); this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, (RXIO_MASK|RX_LED_IO)); this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, (TXIO_MASK|TX_LED_IO)); this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, (RXIO_MASK|RX_LED_IO)); //flash LEDs flash_leds(); if (sbx_debug) std::cerr << boost::format( "SBX GPIO Direction: RX: 0x%08x, TX: 0x%08x" ) % RXIO_MASK % TXIO_MASK << std::endl; //set some default values set_rx_lo_freq((sbx_freq_range.start() + sbx_freq_range.stop())/2.0); set_tx_lo_freq((sbx_freq_range.start() + sbx_freq_range.stop())/2.0); set_rx_ant("RX2"); BOOST_FOREACH(const std::string &name, sbx_tx_gain_ranges.keys()){ set_tx_gain(sbx_tx_gain_ranges[name].start(), name); } BOOST_FOREACH(const std::string &name, sbx_rx_gain_ranges.keys()){ set_rx_gain(sbx_rx_gain_ranges[name].start(), name); } } sbx_xcvr::~sbx_xcvr(void){ /* NOP */ } /*********************************************************************** * Gain Handling **********************************************************************/ static int rx_pga0_gain_to_iobits(double &gain){ //clip the input gain = sbx_rx_gain_ranges["PGA0"].clip(gain); //convert to attenuation and update iobits for atr double attn = sbx_rx_gain_ranges["PGA0"].stop() - gain; //calculate the RX attenuation int attn_code = int(floor(attn*2)); int iobits = ((~attn_code) << RX_ATTN_SHIFT) & RX_ATTN_MASK; if (sbx_debug) std::cerr << boost::format( "SBX TX Attenuation: %f dB, Code: %d, IO Bits %x, Mask: %x" ) % attn % attn_code % (iobits & RX_ATTN_MASK) % RX_ATTN_MASK << std::endl; //the actual gain setting gain = sbx_rx_gain_ranges["PGA0"].stop() - double(attn_code)/2; return iobits; } static int tx_pga0_gain_to_iobits(double &gain){ //clip the input gain = sbx_tx_gain_ranges["PGA0"].clip(gain); //convert to attenuation and update iobits for atr double attn = sbx_tx_gain_ranges["PGA0"].stop() - gain; //calculate the TX attenuation int attn_code = int(floor(attn*2)); int iobits = ((~attn_code) << TX_ATTN_SHIFT) & TX_ATTN_MASK; if (sbx_debug) std::cerr << boost::format( "SBX TX Attenuation: %f dB, Code: %d, IO Bits %x, Mask: %x" ) % attn % attn_code % (iobits & TX_ATTN_MASK) % TX_ATTN_MASK << std::endl; //the actual gain setting gain = sbx_tx_gain_ranges["PGA0"].stop() - double(attn_code)/2; return iobits; } void sbx_xcvr::set_tx_gain(double gain, const std::string &name){ assert_has(sbx_tx_gain_ranges.keys(), name, "sbx tx gain name"); if(name == "PGA0"){ tx_pga0_gain_to_iobits(gain); _tx_gains[name] = gain; //write the new gain to atr regs update_atr(); } else UHD_THROW_INVALID_CODE_PATH(); } void sbx_xcvr::set_rx_gain(double gain, const std::string &name){ assert_has(sbx_rx_gain_ranges.keys(), name, "sbx rx gain name"); if(name == "PGA0"){ rx_pga0_gain_to_iobits(gain); _rx_gains[name] = gain; //write the new gain to atr regs update_atr(); } else UHD_THROW_INVALID_CODE_PATH(); } /*********************************************************************** * Antenna Handling **********************************************************************/ void sbx_xcvr::update_atr(void){ //calculate atr pins int rx_pga0_iobits = rx_pga0_gain_to_iobits(_rx_gains["PGA0"]); int tx_pga0_iobits = tx_pga0_gain_to_iobits(_tx_gains["PGA0"]); int rx_lo_lpf_en = (_rx_lo_freq == sbx_enable_rx_lo_filter.clip(_rx_lo_freq)) ? LO_LPF_EN : 0; int tx_lo_lpf_en = (_tx_lo_freq == sbx_enable_tx_lo_filter.clip(_tx_lo_freq)) ? LO_LPF_EN : 0; int rx_ld_led = get_locked(dboard_iface::UNIT_RX) ? 0 : RX_LED_LD; int tx_ld_led = get_locked(dboard_iface::UNIT_TX) ? 0 : TX_LED_LD; int rx_ant_led = _rx_ant == "TX/RX" ? RX_LED_RX1RX2 : 0; int tx_ant_led = _rx_ant == "TX/RX" ? 0 : TX_LED_TXRX; //setup the tx atr (this does not change with antenna) this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_IDLE, tx_pga0_iobits | tx_lo_lpf_en | tx_ld_led | tx_ant_led | TX_POWER_UP | ANT_XX | TX_MIXER_DIS); this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_TX_ONLY, tx_pga0_iobits | tx_lo_lpf_en | tx_ld_led | tx_ant_led | TX_POWER_UP | ANT_TX | TX_MIXER_ENB); this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_FULL_DUPLEX, tx_pga0_iobits | tx_lo_lpf_en | tx_ld_led | tx_ant_led | TX_POWER_UP | ANT_TX | TX_MIXER_ENB); //setup the rx atr (this does not change with antenna) this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_IDLE, rx_pga0_iobits | rx_lo_lpf_en | rx_ld_led | rx_ant_led | RX_POWER_UP | ANT_XX | RX_MIXER_DIS); this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_TX_ONLY, rx_pga0_iobits | rx_lo_lpf_en | rx_ld_led | rx_ant_led | RX_POWER_UP | ANT_RX2 | RX_MIXER_DIS); this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_FULL_DUPLEX, rx_pga0_iobits | rx_lo_lpf_en | rx_ld_led | rx_ant_led | RX_POWER_UP | ANT_RX2 | RX_MIXER_ENB); //set the atr regs that change with antenna setting this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_RX_ONLY, tx_pga0_iobits | tx_lo_lpf_en | tx_ld_led | tx_ant_led | TX_POWER_UP | TX_MIXER_DIS | ((_rx_ant == "TX/RX")? ANT_RX : ANT_TX)); this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_RX_ONLY, rx_pga0_iobits | rx_lo_lpf_en | rx_ld_led | rx_ant_led | RX_POWER_UP | RX_MIXER_ENB | ((_rx_ant == "TX/RX")? ANT_TXRX : ANT_RX2)); if (sbx_debug) std::cerr << boost::format( "SBX RXONLY ATR REG: 0x%08x" ) % (rx_pga0_iobits | RX_POWER_UP | RX_MIXER_ENB | ((_rx_ant == "TX/RX")? ANT_TXRX : ANT_RX2)) << std::endl; } void sbx_xcvr::set_rx_ant(const std::string &ant){ //validate input assert_has(sbx_rx_antennas, ant, "sbx rx antenna name"); //shadow the setting _rx_ant = ant; //write the new antenna setting to atr regs update_atr(); } void sbx_xcvr::set_tx_ant(const std::string &ant){ assert_has(sbx_tx_antennas, ant, "sbx tx antenna name"); //only one antenna option, do nothing } /*********************************************************************** * Tuning **********************************************************************/ void sbx_xcvr::set_rx_lo_freq(double freq){ _rx_lo_freq = set_lo_freq(dboard_iface::UNIT_RX, freq); } void sbx_xcvr::set_tx_lo_freq(double freq){ _tx_lo_freq = set_lo_freq(dboard_iface::UNIT_TX, freq); } double sbx_xcvr::set_lo_freq( dboard_iface::unit_t unit, double target_freq ){ if (sbx_debug) std::cerr << boost::format( "SBX tune: target frequency %f Mhz" ) % (target_freq/1e6) << std::endl; //clip the input target_freq = sbx_freq_range.clip(target_freq); //map prescaler setting to mininmum integer divider (N) values (pg.18 prescaler) static const uhd::dict prescaler_to_min_int_div = map_list_of (0,23) //adf4350_regs_t::PRESCALER_4_5 (1,75) //adf4350_regs_t::PRESCALER_8_9 ; //map rf divider select output dividers to enums static const uhd::dict rfdivsel_to_enum = map_list_of (1, adf4350_regs_t::RF_DIVIDER_SELECT_DIV1) (2, adf4350_regs_t::RF_DIVIDER_SELECT_DIV2) (4, adf4350_regs_t::RF_DIVIDER_SELECT_DIV4) (8, adf4350_regs_t::RF_DIVIDER_SELECT_DIV8) (16, adf4350_regs_t::RF_DIVIDER_SELECT_DIV16) ; double actual_freq, pfd_freq; double ref_freq = this->get_iface()->get_clock_rate(unit); int R=0, BS=0, N=0, FRAC=0, MOD=0; int RFdiv = 1; adf4350_regs_t::reference_divide_by_2_t T = adf4350_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED; adf4350_regs_t::reference_doubler_t D = adf4350_regs_t::REFERENCE_DOUBLER_DISABLED; //Reference doubler for 50% duty cycle // if ref_freq < 12.5MHz enable regs.reference_divide_by_2 if(ref_freq <= 12.5e6) D = adf4350_regs_t::REFERENCE_DOUBLER_ENABLED; //increase RF divider until acceptable VCO frequency //start with target_freq*2 because mixer has divide by 2 double vco_freq = target_freq; while (vco_freq < 2.2e9) { vco_freq *= 2; RFdiv *= 2; } //use 8/9 prescaler for vco_freq > 3 GHz (pg.18 prescaler) adf4350_regs_t::prescaler_t prescaler = vco_freq > 3e9 ? adf4350_regs_t::PRESCALER_8_9 : adf4350_regs_t::PRESCALER_4_5; /* * The goal here is to loop though possible R dividers, * band select clock dividers, N (int) dividers, and FRAC * (frac) dividers. * * Calculate the N and F dividers for each set of values. * The loop exists when it meets all of the constraints. * The resulting loop values are loaded into the registers. * * from pg.21 * * f_pfd = f_ref*(1+D)/(R*(1+T)) * f_vco = (N + (FRAC/MOD))*f_pfd * N = f_vco/f_pfd - FRAC/MOD = f_vco*((R*(T+1))/(f_ref*(1+D))) - FRAC/MOD * f_rf = f_vco/RFdiv) * f_actual = f_rf/2 */ for(R = 1; R <= 1023; R+=1){ //PFD input frequency = f_ref/R ... ignoring Reference doubler/divide-by-2 (D & T) pfd_freq = ref_freq*(1+D)/(R*(1+T)); //keep the PFD frequency at or below 25MHz (Loop Filter Bandwidth) if (pfd_freq > 25e6) continue; //ignore fractional part of tuning N = int(std::floor(vco_freq/pfd_freq)); //keep N > minimum int divider requirement if (N < prescaler_to_min_int_div[prescaler]) continue; for(BS=1; BS <= 255; BS+=1){ //keep the band select frequency at or below 100KHz //constraint on band select clock if (pfd_freq/BS > 100e3) continue; goto done_loop; } } done_loop: //Fractional-N calculation MOD = 4095; //max fractional accuracy FRAC = int((vco_freq/pfd_freq - N)*MOD); //Reference divide-by-2 for 50% duty cycle // if R even, move one divide by 2 to to regs.reference_divide_by_2 if(R % 2 == 0){ T = adf4350_regs_t::REFERENCE_DIVIDE_BY_2_ENABLED; R /= 2; } //actual frequency calculation actual_freq = double((N + (double(FRAC)/double(MOD)))*ref_freq*(1+int(D))/(R*(1+int(T)))/RFdiv); if (sbx_debug) { std::cerr << boost::format("SBX Intermediates: ref=%0.2f, outdiv=%f, fbdiv=%f") % (ref_freq*(1+int(D))/(R*(1+int(T)))) % double(RFdiv*2) % double(N + double(FRAC)/double(MOD)) << std::endl; std::cerr << boost::format("SBX tune: R=%d, BS=%d, N=%d, FRAC=%d, MOD=%d, T=%d, D=%d, RFdiv=%d, LD=%d" ) % R % BS % N % FRAC % MOD % T % D % RFdiv % get_locked(unit)<< std::endl << boost::format("SBX Frequencies (MHz): REQ=%0.2f, ACT=%0.2f, VCO=%0.2f, PFD=%0.2f, BAND=%0.2f" ) % (target_freq/1e6) % (actual_freq/1e6) % (vco_freq/1e6) % (pfd_freq/1e6) % (pfd_freq/BS/1e6) << std::endl; } //load the register values adf4350_regs_t regs; if ((unit == dboard_iface::UNIT_TX) and (actual_freq == sbx_tx_lo_2dbm.clip(actual_freq))) regs.output_power = adf4350_regs_t::OUTPUT_POWER_2DBM; else regs.output_power = adf4350_regs_t::OUTPUT_POWER_5DBM; regs.frac_12_bit = FRAC; regs.int_16_bit = N; regs.mod_12_bit = MOD; regs.prescaler = prescaler; regs.r_counter_10_bit = R; regs.reference_divide_by_2 = T; regs.reference_doubler = D; regs.band_select_clock_div = BS; UHD_ASSERT_THROW(rfdivsel_to_enum.has_key(RFdiv)); regs.rf_divider_select = rfdivsel_to_enum[RFdiv]; //write the registers //correct power-up sequence to write registers (5, 4, 3, 2, 1, 0) int addr; for(addr=5; addr>=0; addr--){ if (sbx_debug) std::cerr << boost::format( "SBX SPI Reg (0x%02x): 0x%08x" ) % addr % regs.get_reg(addr) << std::endl; this->get_iface()->write_spi( unit, spi_config_t::EDGE_RISE, regs.get_reg(addr), 32 ); } //return the actual frequency if (sbx_debug) std::cerr << boost::format( "SBX tune: actual frequency %f Mhz" ) % (actual_freq/1e6) << std::endl; return actual_freq; } /*********************************************************************** * RX Get and Set **********************************************************************/ void sbx_xcvr::rx_get(const wax::obj &key_, wax::obj &val){ named_prop_t key = named_prop_t::extract(key_); //handle the get request conditioned on the key switch(key.as()){ case SUBDEV_PROP_NAME: val = get_rx_id().to_pp_string(); return; case SUBDEV_PROP_OTHERS: val = prop_names_t(); //empty return; case SUBDEV_PROP_GAIN: assert_has(_rx_gains.keys(), key.name, "sbx rx gain name"); val = _rx_gains[key.name]; return; case SUBDEV_PROP_GAIN_RANGE: assert_has(sbx_rx_gain_ranges.keys(), key.name, "sbx rx gain name"); val = sbx_rx_gain_ranges[key.name]; return; case SUBDEV_PROP_GAIN_NAMES: val = prop_names_t(sbx_rx_gain_ranges.keys()); return; case SUBDEV_PROP_FREQ: val = _rx_lo_freq; return; case SUBDEV_PROP_FREQ_RANGE: val = sbx_freq_range; return; case SUBDEV_PROP_ANTENNA: val = _rx_ant; return; case SUBDEV_PROP_ANTENNA_NAMES: val = sbx_rx_antennas; return; case SUBDEV_PROP_CONNECTION: val = SUBDEV_CONN_COMPLEX_IQ; return; case SUBDEV_PROP_USE_LO_OFFSET: val = false; return; case SUBDEV_PROP_ENABLED: val = true; //always enabled return; case SUBDEV_PROP_SENSOR: UHD_ASSERT_THROW(key.name == "lo_locked"); val = sensor_value_t("LO", this->get_locked(dboard_iface::UNIT_RX), "locked", "unlocked"); return; case SUBDEV_PROP_SENSOR_NAMES: val = prop_names_t(1, "lo_locked"); return; case SUBDEV_PROP_BANDWIDTH: val = 2*20.0e6; //20MHz low-pass, we want complex double-sided return; default: UHD_THROW_PROP_GET_ERROR(); } } void sbx_xcvr::rx_set(const wax::obj &key_, const wax::obj &val){ named_prop_t key = named_prop_t::extract(key_); //handle the get request conditioned on the key switch(key.as()){ case SUBDEV_PROP_FREQ: this->set_rx_lo_freq(val.as()); return; case SUBDEV_PROP_GAIN: this->set_rx_gain(val.as(), key.name); return; case SUBDEV_PROP_ANTENNA: this->set_rx_ant(val.as()); return; case SUBDEV_PROP_ENABLED: return; //always enabled case SUBDEV_PROP_BANDWIDTH: uhd::warning::post( str(boost::format("SBX: No tunable bandwidth, fixed filtered to 40MHz")) ); return; default: UHD_THROW_PROP_SET_ERROR(); } } /*********************************************************************** * TX Get and Set **********************************************************************/ void sbx_xcvr::tx_get(const wax::obj &key_, wax::obj &val){ named_prop_t key = named_prop_t::extract(key_); //handle the get request conditioned on the key switch(key.as()){ case SUBDEV_PROP_NAME: val = get_tx_id().to_pp_string(); return; case SUBDEV_PROP_OTHERS: val = prop_names_t(); //empty return; case SUBDEV_PROP_GAIN: assert_has(_tx_gains.keys(), key.name, "sbx tx gain name"); val = _tx_gains[key.name]; return; case SUBDEV_PROP_GAIN_RANGE: assert_has(sbx_tx_gain_ranges.keys(), key.name, "sbx tx gain name"); val = sbx_tx_gain_ranges[key.name]; return; case SUBDEV_PROP_GAIN_NAMES: val = prop_names_t(sbx_tx_gain_ranges.keys()); return; case SUBDEV_PROP_FREQ: val = _tx_lo_freq; return; case SUBDEV_PROP_FREQ_RANGE: val = sbx_freq_range; return; case SUBDEV_PROP_ANTENNA: val = std::string("TX/RX"); return; case SUBDEV_PROP_ANTENNA_NAMES: val = sbx_tx_antennas; return; case SUBDEV_PROP_CONNECTION: val = SUBDEV_CONN_COMPLEX_QI; return; case SUBDEV_PROP_USE_LO_OFFSET: val = false; return; case SUBDEV_PROP_ENABLED: val = true; //always enabled return; case SUBDEV_PROP_SENSOR: UHD_ASSERT_THROW(key.name == "lo_locked"); val = sensor_value_t("LO", this->get_locked(dboard_iface::UNIT_TX), "locked", "unlocked"); return; case SUBDEV_PROP_SENSOR_NAMES: val = prop_names_t(1, "lo_locked"); return; case SUBDEV_PROP_BANDWIDTH: val = 2*20.0e6; //20MHz low-pass, we want complex double-sided return; default: UHD_THROW_PROP_GET_ERROR(); } } void sbx_xcvr::tx_set(const wax::obj &key_, const wax::obj &val){ named_prop_t key = named_prop_t::extract(key_); //handle the get request conditioned on the key switch(key.as()){ case SUBDEV_PROP_FREQ: this->set_tx_lo_freq(val.as()); return; case SUBDEV_PROP_GAIN: this->set_tx_gain(val.as(), key.name); return; case SUBDEV_PROP_ANTENNA: this->set_tx_ant(val.as()); return; case SUBDEV_PROP_ENABLED: return; //always enabled case SUBDEV_PROP_BANDWIDTH: uhd::warning::post( str(boost::format("SBX: No tunable bandwidth, fixed filtered to 40MHz")) ); return; default: UHD_THROW_PROP_SET_ERROR(); } }