//
// Copyright 2010 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
static const bool rfx_debug = false;
// IO Pin functions
#define POWER_IO (1 << 7) // Low enables power supply
#define ANTSW_IO (1 << 6) // On TX DB, 0 = TX, 1 = RX, on RX DB 0 = main ant, 1 = RX2
#define MIXER_IO (1 << 5) // Enable appropriate mixer
#define LOCKDET_MASK (1 << 2) // Input pin
// Mixer constants
#define MIXER_ENB MIXER_IO
#define MIXER_DIS 0
// Power constants
#define POWER_UP 0
#define POWER_DOWN POWER_IO
// Antenna constants
#define ANT_TX 0 //the tx line is transmitting
#define ANT_RX ANTSW_IO //the tx line is receiving
#define ANT_TXRX 0 //the rx line is on txrx
#define ANT_RX2 ANTSW_IO //the rx line in on rx2
#define ANT_XX 0 //dont care how the antenna is set
#include "adf4360_regs.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace uhd;
using namespace uhd::usrp;
using namespace boost::assign;
/***********************************************************************
* The RFX series of dboards
**********************************************************************/
static const float _max_rx_pga0_gain = 45;
class rfx_xcvr : public xcvr_dboard_base{
public:
rfx_xcvr(
ctor_args_t args,
const freq_range_t &freq_range,
bool rx_div2, bool tx_div2
);
~rfx_xcvr(void);
void rx_get(const wax::obj &key, wax::obj &val);
void rx_set(const wax::obj &key, const wax::obj &val);
void tx_get(const wax::obj &key, wax::obj &val);
void tx_set(const wax::obj &key, const wax::obj &val);
private:
freq_range_t _freq_range;
uhd::dict _div2;
double _rx_lo_freq, _tx_lo_freq;
std::string _rx_ant;
float _rx_pga0_gain;
void set_rx_lo_freq(double freq);
void set_tx_lo_freq(double freq);
void set_rx_ant(const std::string &ant);
void set_rx_pga0_gain(float gain);
/*!
* Set the LO frequency for the particular dboard unit.
* \param unit which unit rx or tx
* \param target_freq the desired frequency in Hz
* \return the actual frequency in Hz
*/
double set_lo_freq(dboard_iface::unit_t unit, double target_freq);
/*!
* Get the lock detect status of the LO.
* \param unit which unit rx or tx
* \return true for locked
*/
bool get_locked(dboard_iface::unit_t unit){
return (this->get_iface()->read_gpio(unit) & LOCKDET_MASK) != 0;
}
};
/***********************************************************************
* Register the RFX dboards (min freq, max freq, rx div2, tx div2)
**********************************************************************/
static dboard_base::sptr make_rfx_flex400(dboard_base::ctor_args_t args){
return dboard_base::sptr(new rfx_xcvr(args, freq_range_t(400e6, 500e6), false, true));
}
static dboard_base::sptr make_rfx_flex900(dboard_base::ctor_args_t args){
return dboard_base::sptr(new rfx_xcvr(args, freq_range_t(750e6, 1050e6), true, true));
}
static dboard_base::sptr make_rfx_flex1800(dboard_base::ctor_args_t args){
return dboard_base::sptr(new rfx_xcvr(args, freq_range_t(1500e6, 2100e6), false, false));
}
static dboard_base::sptr make_rfx_flex1200(dboard_base::ctor_args_t args){
return dboard_base::sptr(new rfx_xcvr(args, freq_range_t(1150e6, 1450e6), true, true));
}
static dboard_base::sptr make_rfx_flex2400(dboard_base::ctor_args_t args){
return dboard_base::sptr(new rfx_xcvr(args, freq_range_t(2300e6, 2900e6), false, false));
}
UHD_STATIC_BLOCK(reg_rfx_dboards){
dboard_manager::register_dboard(0x0024, &make_rfx_flex400, "Flex 400 Rx MIMO B");
dboard_manager::register_dboard(0x0028, &make_rfx_flex400, "Flex 400 Tx MIMO B");
dboard_manager::register_dboard(0x0025, &make_rfx_flex900, "Flex 900 Rx MIMO B");
dboard_manager::register_dboard(0x0029, &make_rfx_flex900, "Flex 900 Tx MIMO B");
dboard_manager::register_dboard(0x0034, &make_rfx_flex1800, "Flex 1800 Rx MIMO B");
dboard_manager::register_dboard(0x0035, &make_rfx_flex1800, "Flex 1800 Tx MIMO B");
dboard_manager::register_dboard(0x0026, &make_rfx_flex1200, "Flex 1200 Rx MIMO B");
dboard_manager::register_dboard(0x002a, &make_rfx_flex1200, "Flex 1200 Tx MIMO B");
dboard_manager::register_dboard(0x0027, &make_rfx_flex2400, "Flex 2400 Rx MIMO B");
dboard_manager::register_dboard(0x002b, &make_rfx_flex2400, "Flex 2400 Tx MIMO B");
}
/***********************************************************************
* Structors
**********************************************************************/
rfx_xcvr::rfx_xcvr(
ctor_args_t args,
const freq_range_t &freq_range,
bool rx_div2, bool tx_div2
) : xcvr_dboard_base(args){
_freq_range = freq_range;
_div2[dboard_iface::UNIT_RX] = rx_div2;
_div2[dboard_iface::UNIT_TX] = tx_div2;
//enable the clocks that we need
this->get_iface()->set_clock_enabled(dboard_iface::UNIT_TX, true);
this->get_iface()->set_clock_enabled(dboard_iface::UNIT_RX, true);
//set the gpio directions
boost::uint16_t output_enables = POWER_IO | ANTSW_IO | MIXER_IO;
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, output_enables);
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, output_enables);
//setup the tx atr (this does not change with antenna)
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_IDLE, POWER_UP | ANT_XX | MIXER_DIS);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_RX_ONLY, POWER_UP | ANT_RX | MIXER_DIS);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_TX_ONLY, POWER_UP | ANT_TX | MIXER_ENB);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_FULL_DUPLEX, POWER_UP | ANT_TX | MIXER_ENB);
//setup the rx atr (this does not change with antenna)
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_IDLE, POWER_UP | ANT_XX | MIXER_DIS);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_TX_ONLY, POWER_UP | ANT_XX | MIXER_DIS);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_FULL_DUPLEX, POWER_UP | ANT_RX2| MIXER_ENB);
//set some default values
set_rx_lo_freq((_freq_range.min + _freq_range.max)/2.0);
set_tx_lo_freq((_freq_range.min + _freq_range.max)/2.0);
set_rx_ant("RX2");
set_rx_pga0_gain(0);
}
rfx_xcvr::~rfx_xcvr(void){
/* NOP */
}
/***********************************************************************
* Helper Methods
**********************************************************************/
void rfx_xcvr::set_rx_lo_freq(double freq){
_rx_lo_freq = set_lo_freq(dboard_iface::UNIT_RX, freq);
}
void rfx_xcvr::set_tx_lo_freq(double freq){
_tx_lo_freq = set_lo_freq(dboard_iface::UNIT_TX, freq);
}
void rfx_xcvr::set_rx_ant(const std::string &ant){
//validate input
UHD_ASSERT_THROW(ant == "TX/RX" or ant == "RX2");
//set the rx atr regs that change with antenna setting
this->get_iface()->set_atr_reg(
dboard_iface::UNIT_RX, dboard_iface::ATR_REG_RX_ONLY,
POWER_UP | MIXER_ENB | ((ant == "TX/RX")? ANT_TXRX : ANT_RX2)
);
//shadow the setting
_rx_ant = ant;
}
void rfx_xcvr::set_rx_pga0_gain(float gain){
//clip the input
gain = std::clip(gain, 0, _max_rx_pga0_gain);
//voltage level constants
static const float max_volts = float(.2), min_volts = float(1.2);
static const float slope = (max_volts-min_volts)/_max_rx_pga0_gain;
//calculate the voltage for the aux dac
float dac_volts = gain*slope + min_volts;
//write the new voltage to the aux dac
this->get_iface()->write_aux_dac(dboard_iface::UNIT_RX, 1, dac_volts);
//shadow the setting (does not account for precision loss)
_rx_pga0_gain = gain;
}
double rfx_xcvr::set_lo_freq(
dboard_iface::unit_t unit,
double target_freq
){
if (rfx_debug) std::cerr << boost::format(
"RFX tune: target frequency %f Mhz"
) % (target_freq/1e6) << std::endl;
//clip the input
target_freq = std::clip(target_freq, _freq_range.min, _freq_range.max);
if (_div2[unit]) target_freq *= 2;
//map prescalers to the register enums
static const uhd::dict prescaler_to_enum = map_list_of
(8, adf4360_regs_t::PRESCALER_VALUE_8_9)
(16, adf4360_regs_t::PRESCALER_VALUE_16_17)
(32, adf4360_regs_t::PRESCALER_VALUE_32_33)
;
//map band select clock dividers to enums
static const uhd::dict bandsel_to_enum = map_list_of
(1, adf4360_regs_t::BAND_SELECT_CLOCK_DIV_1)
(2, adf4360_regs_t::BAND_SELECT_CLOCK_DIV_2)
(4, adf4360_regs_t::BAND_SELECT_CLOCK_DIV_4)
(8, adf4360_regs_t::BAND_SELECT_CLOCK_DIV_8)
;
double actual_freq, ref_freq = this->get_iface()->get_clock_rate(unit);
int R, BS, P, B, A;
/*
* The goal here to to loop though possible R dividers,
* band select clock dividers, and prescaler values.
* Calculate the A and B counters for each set of values.
* The loop exists when it meets all of the constraints.
* The resulting loop values are loaded into the registers.
*
* fvco = [P*B + A] * fref/R
* fvco*R/fref = P*B + A = N
*/
for(R = 2; R <= 32; R+=2){
BOOST_FOREACH(BS, bandsel_to_enum.keys()){
if (ref_freq/R/BS > 1e6) continue; //constraint on band select clock
BOOST_FOREACH(P, prescaler_to_enum.keys()){
//calculate B and A from N
double N = target_freq*R/ref_freq;
B = int(std::floor(N/P));
A = boost::math::iround(N - P*B);
if (B < A or B > 8191 or B < 3 or A > 31) continue; //constraints on A, B
//calculate the actual frequency
actual_freq = double(P*B + A)*ref_freq/R;
if (actual_freq/P > 300e6) continue; //constraint on prescaler output
//constraints met: exit loop
goto done_loop;
}
}
} done_loop:
if (rfx_debug) std::cerr << boost::format(
"RFX tune: R=%d, BS=%d, P=%d, B=%d, A=%d"
) % R % BS % P % B % A << std::endl;
//load the register values
adf4360_regs_t regs;
regs.core_power_level = adf4360_regs_t::CORE_POWER_LEVEL_10MA;
regs.counter_operation = adf4360_regs_t::COUNTER_OPERATION_NORMAL;
regs.muxout_control = adf4360_regs_t::MUXOUT_CONTROL_DLD;
regs.phase_detector_polarity = adf4360_regs_t::PHASE_DETECTOR_POLARITY_POS;
regs.charge_pump_output = adf4360_regs_t::CHARGE_PUMP_OUTPUT_NORMAL;
regs.cp_gain_0 = adf4360_regs_t::CP_GAIN_0_SET1;
regs.mute_till_ld = adf4360_regs_t::MUTE_TILL_LD_ENB;
regs.output_power_level = adf4360_regs_t::OUTPUT_POWER_LEVEL_3_5MA;
regs.current_setting1 = adf4360_regs_t::CURRENT_SETTING1_0_31MA;
regs.current_setting2 = adf4360_regs_t::CURRENT_SETTING2_0_31MA;
regs.power_down = adf4360_regs_t::POWER_DOWN_NORMAL_OP;
regs.prescaler_value = prescaler_to_enum[P];
regs.a_counter = A;
regs.b_counter = B;
regs.cp_gain_1 = adf4360_regs_t::CP_GAIN_1_SET1;
regs.divide_by_2_output = (_div2[unit])?
adf4360_regs_t::DIVIDE_BY_2_OUTPUT_DIV2 :
adf4360_regs_t::DIVIDE_BY_2_OUTPUT_FUND ;
regs.divide_by_2_prescaler = adf4360_regs_t::DIVIDE_BY_2_PRESCALER_FUND;
regs.r_counter = R;
regs.ablpw = adf4360_regs_t::ABLPW_3_0NS;
regs.lock_detect_precision = adf4360_regs_t::LOCK_DETECT_PRECISION_5CYCLES;
regs.test_mode_bit = 0;
regs.band_select_clock_div = bandsel_to_enum[BS];
//write the registers
std::vector addrs = list_of //correct power-up sequence to write registers (R, C, N)
(adf4360_regs_t::ADDR_RCOUNTER)
(adf4360_regs_t::ADDR_CONTROL)
(adf4360_regs_t::ADDR_NCOUNTER)
;
BOOST_FOREACH(adf4360_regs_t::addr_t addr, addrs){
this->get_iface()->write_spi(
unit, spi_config_t::EDGE_RISE,
regs.get_reg(addr), 24
);
}
//return the actual frequency
if (_div2[unit]) actual_freq /= 2;
if (rfx_debug) std::cerr << boost::format(
"RFX tune: actual frequency %f Mhz"
) % (actual_freq/1e6) << std::endl;
return actual_freq;
}
/***********************************************************************
* RX Get and Set
**********************************************************************/
void rfx_xcvr::rx_get(const wax::obj &key_, wax::obj &val){
wax::obj key; std::string name;
boost::tie(key, name) = extract_named_prop(key_);
//handle the get request conditioned on the key
switch(key.as()){
case SUBDEV_PROP_NAME:
val = get_rx_id().to_pp_string();
return;
case SUBDEV_PROP_OTHERS:
val = prop_names_t(); //empty
return;
case SUBDEV_PROP_GAIN:
UHD_ASSERT_THROW(name == "PGA0");
val = _rx_pga0_gain;
return;
case SUBDEV_PROP_GAIN_RANGE:
UHD_ASSERT_THROW(name == "PGA0");
val = gain_range_t(0, _max_rx_pga0_gain, float(0.022));
return;
case SUBDEV_PROP_GAIN_NAMES:
val = prop_names_t(1, "PGA0");
return;
case SUBDEV_PROP_FREQ:
val = _rx_lo_freq;
return;
case SUBDEV_PROP_FREQ_RANGE:
val = _freq_range;
return;
case SUBDEV_PROP_ANTENNA:
val = _rx_ant;
return;
case SUBDEV_PROP_ANTENNA_NAMES:{
prop_names_t ants = list_of("TX/RX")("RX2");
val = ants;
}
return;
case SUBDEV_PROP_QUADRATURE:
val = true;
return;
case SUBDEV_PROP_IQ_SWAPPED:
val = true;
return;
case SUBDEV_PROP_SPECTRUM_INVERTED:
val = false;
return;
case SUBDEV_PROP_USE_LO_OFFSET:
val = false;
return;
case SUBDEV_PROP_LO_LOCKED:
val = this->get_locked(dboard_iface::UNIT_RX);
return;
default: UHD_THROW_PROP_GET_ERROR();
}
}
void rfx_xcvr::rx_set(const wax::obj &key_, const wax::obj &val){
wax::obj key; std::string name;
boost::tie(key, name) = extract_named_prop(key_);
//handle the get request conditioned on the key
switch(key.as()){
case SUBDEV_PROP_FREQ:
set_rx_lo_freq(val.as());
return;
case SUBDEV_PROP_GAIN:
UHD_ASSERT_THROW(name == "PGA0");
set_rx_pga0_gain(val.as());
return;
case SUBDEV_PROP_ANTENNA:
set_rx_ant(val.as());
return;
default: UHD_THROW_PROP_SET_ERROR();
}
}
/***********************************************************************
* TX Get and Set
**********************************************************************/
void rfx_xcvr::tx_get(const wax::obj &key_, wax::obj &val){
wax::obj key; std::string name;
boost::tie(key, name) = extract_named_prop(key_);
//handle the get request conditioned on the key
switch(key.as()){
case SUBDEV_PROP_NAME:
val = get_tx_id().to_pp_string();
return;
case SUBDEV_PROP_OTHERS:
val = prop_names_t(); //empty
return;
case SUBDEV_PROP_GAIN:
val = float(0);
return;
case SUBDEV_PROP_GAIN_RANGE:
val = gain_range_t(0, 0, 0);
return;
case SUBDEV_PROP_GAIN_NAMES:
val = prop_names_t(); //empty
return;
case SUBDEV_PROP_FREQ:
val = _tx_lo_freq;
return;
case SUBDEV_PROP_FREQ_RANGE:
val = _freq_range;
return;
case SUBDEV_PROP_ANTENNA:
val = std::string("TX/RX");
return;
case SUBDEV_PROP_ANTENNA_NAMES:
val = prop_names_t(1, "TX/RX");
return;
case SUBDEV_PROP_QUADRATURE:
val = true;
return;
case SUBDEV_PROP_IQ_SWAPPED:
val = false;
return;
case SUBDEV_PROP_SPECTRUM_INVERTED:
val = false;
return;
case SUBDEV_PROP_USE_LO_OFFSET:
val = true;
return;
case SUBDEV_PROP_LO_LOCKED:
val = this->get_locked(dboard_iface::UNIT_TX);
return;
default: UHD_THROW_PROP_GET_ERROR();
}
}
void rfx_xcvr::tx_set(const wax::obj &key_, const wax::obj &val){
wax::obj key; std::string name;
boost::tie(key, name) = extract_named_prop(key_);
//handle the get request conditioned on the key
switch(key.as()){
case SUBDEV_PROP_FREQ:
set_tx_lo_freq(val.as());
return;
case SUBDEV_PROP_GAIN:
//no gains to set!
return;
case SUBDEV_PROP_ANTENNA:
//its always set to tx/rx, so we only allow this value
UHD_ASSERT_THROW(val.as() == "TX/RX");
return;
default: UHD_THROW_PROP_SET_ERROR();
}
}