// // Copyright 2010 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // static const bool rfx_debug = false; // IO Pin functions #define POWER_IO (1 << 7) // Low enables power supply #define ANTSW_IO (1 << 6) // On TX DB, 0 = TX, 1 = RX, on RX DB 0 = main ant, 1 = RX2 #define MIXER_IO (1 << 5) // Enable appropriate mixer #define LOCKDET_MASK (1 << 2) // Input pin // Mixer constants #define MIXER_ENB MIXER_IO #define MIXER_DIS 0 // Power constants #define POWER_UP 0 #define POWER_DOWN POWER_IO // Antenna constants #define ANT_TX 0 //the tx line is transmitting #define ANT_RX ANTSW_IO //the tx line is receiving #define ANT_TXRX 0 //the rx line is on txrx #define ANT_RX2 ANTSW_IO //the rx line in on rx2 #define ANT_XX 0 //dont care how the antenna is set #include "adf4360_regs.hpp" #include #include #include #include #include #include #include #include #include #include #include using namespace uhd; using namespace uhd::usrp; using namespace boost::assign; /*********************************************************************** * The RFX series of dboards **********************************************************************/ static const float _max_rx_pga0_gain = 45; class rfx_xcvr : public xcvr_dboard_base{ public: rfx_xcvr( ctor_args_t const& args, const freq_range_t &freq_range, bool rx_div2, bool tx_div2 ); ~rfx_xcvr(void); void rx_get(const wax::obj &key, wax::obj &val); void rx_set(const wax::obj &key, const wax::obj &val); void tx_get(const wax::obj &key, wax::obj &val); void tx_set(const wax::obj &key, const wax::obj &val); private: freq_range_t _freq_range; uhd::dict _div2; double _rx_lo_freq, _tx_lo_freq; std::string _rx_ant; float _rx_pga0_gain; void set_rx_lo_freq(double freq); void set_tx_lo_freq(double freq); void set_rx_ant(const std::string &ant); void set_rx_pga0_gain(float gain); /*! * Set the LO frequency for the particular dboard unit. * \param unit which unit rx or tx * \param target_freq the desired frequency in Hz * \return the actual frequency in Hz */ double set_lo_freq(dboard_iface::unit_t unit, double target_freq); /*! * Get the lock detect status of the LO. * \param unit which unit rx or tx * \return true for locked */ bool get_locked(dboard_iface::unit_t unit){ return (this->get_iface()->read_gpio(unit) & LOCKDET_MASK) != 0; } }; /*********************************************************************** * Register the RFX dboards (min freq, max freq, rx div2, tx div2) **********************************************************************/ static dboard_base::sptr make_rfx_flex400(dboard_base::ctor_args_t const& args){ return dboard_base::sptr(new rfx_xcvr(args, freq_range_t(400e6, 500e6), false, true)); } static dboard_base::sptr make_rfx_flex900(dboard_base::ctor_args_t const& args){ return dboard_base::sptr(new rfx_xcvr(args, freq_range_t(750e6, 1050e6), true, true)); } static dboard_base::sptr make_rfx_flex1800(dboard_base::ctor_args_t const& args){ return dboard_base::sptr(new rfx_xcvr(args, freq_range_t(1500e6, 2100e6), false, false)); } static dboard_base::sptr make_rfx_flex1200(dboard_base::ctor_args_t const& args){ return dboard_base::sptr(new rfx_xcvr(args, freq_range_t(1150e6, 1450e6), true, true)); } static dboard_base::sptr make_rfx_flex2400(dboard_base::ctor_args_t const& args){ return dboard_base::sptr(new rfx_xcvr(args, freq_range_t(2300e6, 2900e6), false, false)); } UHD_STATIC_BLOCK(reg_rfx_dboards){ dboard_manager::register_dboard(0x0024, &make_rfx_flex400, "Flex 400 Rx MIMO B"); dboard_manager::register_dboard(0x0028, &make_rfx_flex400, "Flex 400 Tx MIMO B"); dboard_manager::register_dboard(0x0025, &make_rfx_flex900, "Flex 900 Rx MIMO B"); dboard_manager::register_dboard(0x0029, &make_rfx_flex900, "Flex 900 Tx MIMO B"); dboard_manager::register_dboard(0x0034, &make_rfx_flex1800, "Flex 1800 Rx MIMO B"); dboard_manager::register_dboard(0x0035, &make_rfx_flex1800, "Flex 1800 Tx MIMO B"); dboard_manager::register_dboard(0x0026, &make_rfx_flex1200, "Flex 1200 Rx MIMO B"); dboard_manager::register_dboard(0x002a, &make_rfx_flex1200, "Flex 1200 Tx MIMO B"); dboard_manager::register_dboard(0x0027, &make_rfx_flex2400, "Flex 2400 Rx MIMO B"); dboard_manager::register_dboard(0x002b, &make_rfx_flex2400, "Flex 2400 Tx MIMO B"); } /*********************************************************************** * Structors **********************************************************************/ rfx_xcvr::rfx_xcvr( ctor_args_t const& args, const freq_range_t &freq_range, bool rx_div2, bool tx_div2 ) : xcvr_dboard_base(args){ _freq_range = freq_range; _div2[dboard_iface::UNIT_RX] = rx_div2; _div2[dboard_iface::UNIT_TX] = tx_div2; //enable the clocks that we need this->get_iface()->set_clock_enabled(dboard_iface::UNIT_TX, true); this->get_iface()->set_clock_enabled(dboard_iface::UNIT_RX, true); //set the gpio directions boost::uint16_t output_enables = POWER_IO | ANTSW_IO | MIXER_IO; this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, output_enables); this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, output_enables); //setup the tx atr (this does not change with antenna) this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_IDLE, POWER_UP | ANT_XX | MIXER_DIS); this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_RX_ONLY, POWER_UP | ANT_RX | MIXER_DIS); this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_TX_ONLY, POWER_UP | ANT_TX | MIXER_ENB); this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_FULL_DUPLEX, POWER_UP | ANT_TX | MIXER_ENB); //setup the rx atr (this does not change with antenna) this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_IDLE, POWER_UP | ANT_XX | MIXER_DIS); this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_TX_ONLY, POWER_UP | ANT_XX | MIXER_DIS); this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_FULL_DUPLEX, POWER_UP | ANT_RX2| MIXER_ENB); //set some default values set_rx_lo_freq((_freq_range.min + _freq_range.max)/2.0); set_tx_lo_freq((_freq_range.min + _freq_range.max)/2.0); set_rx_ant("RX2"); set_rx_pga0_gain(0); } rfx_xcvr::~rfx_xcvr(void){ /* NOP */ } /*********************************************************************** * Helper Methods **********************************************************************/ void rfx_xcvr::set_rx_lo_freq(double freq){ _rx_lo_freq = set_lo_freq(dboard_iface::UNIT_RX, freq); } void rfx_xcvr::set_tx_lo_freq(double freq){ _tx_lo_freq = set_lo_freq(dboard_iface::UNIT_TX, freq); } void rfx_xcvr::set_rx_ant(const std::string &ant){ //validate input UHD_ASSERT_THROW(ant == "TX/RX" or ant == "RX2"); //set the rx atr regs that change with antenna setting this->get_iface()->set_atr_reg( dboard_iface::UNIT_RX, dboard_iface::ATR_REG_RX_ONLY, POWER_UP | MIXER_ENB | ((ant == "TX/RX")? ANT_TXRX : ANT_RX2) ); //shadow the setting _rx_ant = ant; } void rfx_xcvr::set_rx_pga0_gain(float gain){ //clip the input gain = std::clip(gain, 0, _max_rx_pga0_gain); //voltage level constants static const float max_volts = float(.2), min_volts = float(1.2); static const float slope = (max_volts-min_volts)/_max_rx_pga0_gain; //calculate the voltage for the aux dac float dac_volts = gain*slope + min_volts; //write the new voltage to the aux dac this->get_iface()->write_aux_dac(dboard_iface::UNIT_RX, 1, dac_volts); //shadow the setting (does not account for precision loss) _rx_pga0_gain = gain; } double rfx_xcvr::set_lo_freq( dboard_iface::unit_t unit, double target_freq ){ if (rfx_debug) std::cerr << boost::format( "RFX tune: target frequency %f Mhz" ) % (target_freq/1e6) << std::endl; //clip the input target_freq = std::clip(target_freq, _freq_range.min, _freq_range.max); if (_div2[unit]) target_freq *= 2; //map prescalers to the register enums static const uhd::dict prescaler_to_enum = map_list_of (8, adf4360_regs_t::PRESCALER_VALUE_8_9) (16, adf4360_regs_t::PRESCALER_VALUE_16_17) (32, adf4360_regs_t::PRESCALER_VALUE_32_33) ; //map band select clock dividers to enums static const uhd::dict bandsel_to_enum = map_list_of (1, adf4360_regs_t::BAND_SELECT_CLOCK_DIV_1) (2, adf4360_regs_t::BAND_SELECT_CLOCK_DIV_2) (4, adf4360_regs_t::BAND_SELECT_CLOCK_DIV_4) (8, adf4360_regs_t::BAND_SELECT_CLOCK_DIV_8) ; double actual_freq, ref_freq = this->get_iface()->get_clock_rate(unit); int R, BS, P, B, A; /* * The goal here to to loop though possible R dividers, * band select clock dividers, and prescaler values. * Calculate the A and B counters for each set of values. * The loop exists when it meets all of the constraints. * The resulting loop values are loaded into the registers. * * fvco = [P*B + A] * fref/R * fvco*R/fref = P*B + A = N */ for(R = 2; R <= 32; R+=2){ BOOST_FOREACH(BS, bandsel_to_enum.keys()){ if (ref_freq/R/BS > 1e6) continue; //constraint on band select clock BOOST_FOREACH(P, prescaler_to_enum.keys()){ //calculate B and A from N double N = target_freq*R/ref_freq; B = int(std::floor(N/P)); A = boost::math::iround(N - P*B); if (B < A or B > 8191 or B < 3 or A > 31) continue; //constraints on A, B //calculate the actual frequency actual_freq = double(P*B + A)*ref_freq/R; if (actual_freq/P > 300e6) continue; //constraint on prescaler output //constraints met: exit loop goto done_loop; } } } done_loop: if (rfx_debug) std::cerr << boost::format( "RFX tune: R=%d, BS=%d, P=%d, B=%d, A=%d" ) % R % BS % P % B % A << std::endl; //load the register values adf4360_regs_t regs; regs.core_power_level = adf4360_regs_t::CORE_POWER_LEVEL_10MA; regs.counter_operation = adf4360_regs_t::COUNTER_OPERATION_NORMAL; regs.muxout_control = adf4360_regs_t::MUXOUT_CONTROL_DLD; regs.phase_detector_polarity = adf4360_regs_t::PHASE_DETECTOR_POLARITY_POS; regs.charge_pump_output = adf4360_regs_t::CHARGE_PUMP_OUTPUT_NORMAL; regs.cp_gain_0 = adf4360_regs_t::CP_GAIN_0_SET1; regs.mute_till_ld = adf4360_regs_t::MUTE_TILL_LD_ENB; regs.output_power_level = adf4360_regs_t::OUTPUT_POWER_LEVEL_3_5MA; regs.current_setting1 = adf4360_regs_t::CURRENT_SETTING1_0_31MA; regs.current_setting2 = adf4360_regs_t::CURRENT_SETTING2_0_31MA; regs.power_down = adf4360_regs_t::POWER_DOWN_NORMAL_OP; regs.prescaler_value = prescaler_to_enum[P]; regs.a_counter = A; regs.b_counter = B; regs.cp_gain_1 = adf4360_regs_t::CP_GAIN_1_SET1; regs.divide_by_2_output = (_div2[unit])? adf4360_regs_t::DIVIDE_BY_2_OUTPUT_DIV2 : adf4360_regs_t::DIVIDE_BY_2_OUTPUT_FUND ; regs.divide_by_2_prescaler = adf4360_regs_t::DIVIDE_BY_2_PRESCALER_FUND; regs.r_counter = R; regs.ablpw = adf4360_regs_t::ABLPW_3_0NS; regs.lock_detect_precision = adf4360_regs_t::LOCK_DETECT_PRECISION_5CYCLES; regs.test_mode_bit = 0; regs.band_select_clock_div = bandsel_to_enum[BS]; //write the registers std::vector addrs = list_of //correct power-up sequence to write registers (R, C, N) (adf4360_regs_t::ADDR_RCOUNTER) (adf4360_regs_t::ADDR_CONTROL) (adf4360_regs_t::ADDR_NCOUNTER) ; BOOST_FOREACH(adf4360_regs_t::addr_t addr, addrs){ this->get_iface()->write_spi( unit, spi_config_t::EDGE_RISE, regs.get_reg(addr), 24 ); } //return the actual frequency if (_div2[unit]) actual_freq /= 2; if (rfx_debug) std::cerr << boost::format( "RFX tune: actual frequency %f Mhz" ) % (actual_freq/1e6) << std::endl; return actual_freq; } /*********************************************************************** * RX Get and Set **********************************************************************/ void rfx_xcvr::rx_get(const wax::obj &key_, wax::obj &val){ wax::obj key; std::string name; boost::tie(key, name) = extract_named_prop(key_); //handle the get request conditioned on the key switch(key.as()){ case SUBDEV_PROP_NAME: val = dboard_id::to_string(get_rx_id()); return; case SUBDEV_PROP_OTHERS: val = prop_names_t(); //empty return; case SUBDEV_PROP_GAIN: UHD_ASSERT_THROW(name == "PGA0"); val = _rx_pga0_gain; return; case SUBDEV_PROP_GAIN_RANGE: UHD_ASSERT_THROW(name == "PGA0"); val = gain_range_t(0, _max_rx_pga0_gain, float(0.022)); return; case SUBDEV_PROP_GAIN_NAMES: val = prop_names_t(1, "PGA0"); return; case SUBDEV_PROP_FREQ: val = _rx_lo_freq; return; case SUBDEV_PROP_FREQ_RANGE: val = _freq_range; return; case SUBDEV_PROP_ANTENNA: val = _rx_ant; return; case SUBDEV_PROP_ANTENNA_NAMES:{ prop_names_t ants = list_of("TX/RX")("RX2"); val = ants; } return; case SUBDEV_PROP_QUADRATURE: val = true; return; case SUBDEV_PROP_IQ_SWAPPED: val = true; return; case SUBDEV_PROP_SPECTRUM_INVERTED: val = false; return; case SUBDEV_PROP_USE_LO_OFFSET: val = false; return; case SUBDEV_PROP_LO_LOCKED: val = this->get_locked(dboard_iface::UNIT_RX); return; default: UHD_THROW_PROP_GET_ERROR(); } } void rfx_xcvr::rx_set(const wax::obj &key_, const wax::obj &val){ wax::obj key; std::string name; boost::tie(key, name) = extract_named_prop(key_); //handle the get request conditioned on the key switch(key.as()){ case SUBDEV_PROP_FREQ: set_rx_lo_freq(val.as()); return; case SUBDEV_PROP_GAIN: UHD_ASSERT_THROW(name == "PGA0"); set_rx_pga0_gain(val.as()); return; case SUBDEV_PROP_ANTENNA: set_rx_ant(val.as()); return; default: UHD_THROW_PROP_SET_ERROR(); } } /*********************************************************************** * TX Get and Set **********************************************************************/ void rfx_xcvr::tx_get(const wax::obj &key_, wax::obj &val){ wax::obj key; std::string name; boost::tie(key, name) = extract_named_prop(key_); //handle the get request conditioned on the key switch(key.as()){ case SUBDEV_PROP_NAME: val = dboard_id::to_string(get_tx_id()); return; case SUBDEV_PROP_OTHERS: val = prop_names_t(); //empty return; case SUBDEV_PROP_GAIN: val = float(0); return; case SUBDEV_PROP_GAIN_RANGE: val = gain_range_t(0, 0, 0); return; case SUBDEV_PROP_GAIN_NAMES: val = prop_names_t(); //empty return; case SUBDEV_PROP_FREQ: val = _tx_lo_freq; return; case SUBDEV_PROP_FREQ_RANGE: val = _freq_range; return; case SUBDEV_PROP_ANTENNA: val = std::string("TX/RX"); return; case SUBDEV_PROP_ANTENNA_NAMES: val = prop_names_t(1, "TX/RX"); return; case SUBDEV_PROP_QUADRATURE: val = true; return; case SUBDEV_PROP_IQ_SWAPPED: val = false; return; case SUBDEV_PROP_SPECTRUM_INVERTED: val = false; return; case SUBDEV_PROP_USE_LO_OFFSET: val = true; return; case SUBDEV_PROP_LO_LOCKED: val = this->get_locked(dboard_iface::UNIT_TX); return; default: UHD_THROW_PROP_GET_ERROR(); } } void rfx_xcvr::tx_set(const wax::obj &key_, const wax::obj &val){ wax::obj key; std::string name; boost::tie(key, name) = extract_named_prop(key_); //handle the get request conditioned on the key switch(key.as()){ case SUBDEV_PROP_FREQ: set_tx_lo_freq(val.as()); return; case SUBDEV_PROP_GAIN: //no gains to set! return; case SUBDEV_PROP_ANTENNA: //its always set to tx/rx, so we only allow this value UHD_ASSERT_THROW(val.as() == "TX/RX"); return; default: UHD_THROW_PROP_SET_ERROR(); } }