// // Copyright 2010-2012 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // // IO Pin functions #define POWER_IO (1 << 7) // Low enables power supply #define ANTSW_IO (1 << 6) // On TX DB, 0 = TX, 1 = RX, on RX DB 0 = main ant, 1 = RX2 #define MIXER_IO (1 << 5) // Enable appropriate mixer #define LOCKDET_MASK (1 << 2) // Input pin // Mixer constants #define MIXER_ENB MIXER_IO #define MIXER_DIS 0 // Antenna constants #define ANT_TX 0 // the tx line is transmitting #define ANT_RX ANTSW_IO // the tx line is receiving #define ANT_TXRX 0 // the rx line is on txrx #define ANT_RX2 ANTSW_IO // the rx line in on rx2 #define ANT_XX 0 // dont care how the antenna is set #include "adf4360_regs.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace uhd; using namespace uhd::usrp; using namespace boost::assign; /*********************************************************************** * The RFX Series constants **********************************************************************/ static const std::vector rfx_tx_antennas = list_of("TX/RX")("CAL"); static const std::vector rfx_rx_antennas = list_of("TX/RX")("RX2")("CAL"); static const uhd::dict rfx_rx_gain_ranges = map_list_of("PGA0", gain_range_t(0, 70, 0.022)); static const uhd::dict rfx400_rx_gain_ranges = map_list_of("PGA0", gain_range_t(0, 45, 0.022)); /*********************************************************************** * The RFX series of dboards **********************************************************************/ class rfx_xcvr : public xcvr_dboard_base { public: rfx_xcvr( ctor_args_t args, const freq_range_t& freq_range, bool rx_div2, bool tx_div2); ~rfx_xcvr(void) override; private: const freq_range_t _freq_range; const uhd::dict _rx_gain_ranges; const uhd::dict _div2; std::string _rx_ant; uhd::dict _rx_gains; uint16_t _power_up; void set_rx_ant(const std::string& ant); void set_tx_ant(const std::string& ant); double set_rx_gain(double gain, const std::string& name); /*! * Set the LO frequency for the particular dboard unit. * \param unit which unit rx or tx * \param target_freq the desired frequency in Hz * \return the actual frequency in Hz */ double set_lo_freq(dboard_iface::unit_t unit, double target_freq); /*! * Get the lock detect status of the LO. * \param unit which unit rx or tx * \return sensor for locked */ sensor_value_t get_locked(dboard_iface::unit_t unit) { const bool locked = (this->get_iface()->read_gpio(unit) & LOCKDET_MASK) != 0; return sensor_value_t("LO", locked, "locked", "unlocked"); } /*! * Removed incorrect/confusing RSSI calculation * Limited dynamic range of sensor makes this less useful */ }; /*********************************************************************** * Register the RFX dboards (min freq, max freq, rx div2, tx div2) **********************************************************************/ static dboard_base::sptr make_rfx_flex400(dboard_base::ctor_args_t args) { return dboard_base::sptr(new rfx_xcvr(args, freq_range_t(400e6, 500e6), true, true)); } static dboard_base::sptr make_rfx_flex900(dboard_base::ctor_args_t args) { return dboard_base::sptr(new rfx_xcvr(args, freq_range_t(750e6, 1050e6), true, true)); } static dboard_base::sptr make_rfx_flex1800(dboard_base::ctor_args_t args) { return dboard_base::sptr( new rfx_xcvr(args, freq_range_t(1500e6, 2100e6), false, false)); } static dboard_base::sptr make_rfx_flex1200(dboard_base::ctor_args_t args) { return dboard_base::sptr( new rfx_xcvr(args, freq_range_t(1150e6, 1450e6), true, true)); } static dboard_base::sptr make_rfx_flex2200(dboard_base::ctor_args_t args) { return dboard_base::sptr( new rfx_xcvr(args, freq_range_t(2000e6, 2400e6), false, false)); } static dboard_base::sptr make_rfx_flex2400(dboard_base::ctor_args_t args) { return dboard_base::sptr( new rfx_xcvr(args, freq_range_t(2300e6, 2900e6), false, false)); } UHD_STATIC_BLOCK(reg_rfx_dboards) { dboard_manager::register_dboard(0x0024, 0x0028, &make_rfx_flex400, "RFX400"); dboard_manager::register_dboard(0x0025, 0x0029, &make_rfx_flex900, "RFX900"); dboard_manager::register_dboard(0x0034, 0x0035, &make_rfx_flex1800, "RFX1800"); dboard_manager::register_dboard(0x0026, 0x002a, &make_rfx_flex1200, "RFX1200"); dboard_manager::register_dboard(0x002c, 0x002d, &make_rfx_flex2200, "RFX2200"); dboard_manager::register_dboard(0x0027, 0x002b, &make_rfx_flex2400, "RFX2400"); } /*********************************************************************** * Structors **********************************************************************/ rfx_xcvr::rfx_xcvr( ctor_args_t args, const freq_range_t& freq_range, bool rx_div2, bool tx_div2) : xcvr_dboard_base(args) , _freq_range(freq_range) , _rx_gain_ranges( (get_rx_id() == 0x0024) ? rfx400_rx_gain_ranges : rfx_rx_gain_ranges) , _div2(map_list_of(dboard_iface::UNIT_RX, rx_div2)(dboard_iface::UNIT_TX, tx_div2)) , _power_up((get_rx_id() == 0x0024 && get_tx_id() == 0x0028) ? POWER_IO : 0) { //////////////////////////////////////////////////////////////////// // Register RX properties //////////////////////////////////////////////////////////////////// if (get_rx_id() == 0x0024) this->get_rx_subtree()->create("name").set("RFX400 RX"); else if (get_rx_id() == 0x0025) this->get_rx_subtree()->create("name").set("RFX900 RX"); else if (get_rx_id() == 0x0034) this->get_rx_subtree()->create("name").set("RFX1800 RX"); else if (get_rx_id() == 0x0026) this->get_rx_subtree()->create("name").set("RFX1200 RX"); else if (get_rx_id() == 0x002c) this->get_rx_subtree()->create("name").set("RFX2200 RX"); else if (get_rx_id() == 0x0027) this->get_rx_subtree()->create("name").set("RFX2400 RX"); else this->get_rx_subtree()->create("name").set("RFX RX"); this->get_rx_subtree() ->create("sensors/lo_locked") .set_publisher(std::bind(&rfx_xcvr::get_locked, this, dboard_iface::UNIT_RX)); for (const std::string& name : _rx_gain_ranges.keys()) { this->get_rx_subtree() ->create("gains/" + name + "/value") .set_coercer( std::bind(&rfx_xcvr::set_rx_gain, this, std::placeholders::_1, name)) .set(_rx_gain_ranges[name].start()); this->get_rx_subtree() ->create("gains/" + name + "/range") .set(_rx_gain_ranges[name]); } this->get_rx_subtree() ->create("freq/value") .set_coercer(std::bind( &rfx_xcvr::set_lo_freq, this, dboard_iface::UNIT_RX, std::placeholders::_1)) .set((_freq_range.start() + _freq_range.stop()) / 2.0); this->get_rx_subtree()->create("freq/range").set(_freq_range); this->get_rx_subtree() ->create("antenna/value") .add_coerced_subscriber( std::bind(&rfx_xcvr::set_rx_ant, this, std::placeholders::_1)) .set("RX2"); this->get_rx_subtree() ->create>("antenna/options") .set(rfx_rx_antennas); this->get_rx_subtree()->create("connection").set("QI"); this->get_rx_subtree()->create("enabled").set(true); // always enabled this->get_rx_subtree()->create("use_lo_offset").set(false); this->get_rx_subtree() ->create("bandwidth/value") .set(2 * 20.0e6); // 20MHz low-pass, we want complex double-sided this->get_rx_subtree() ->create("bandwidth/range") .set(freq_range_t(2 * 20.0e6, 2 * 20.0e6)); //////////////////////////////////////////////////////////////////// // Register TX properties //////////////////////////////////////////////////////////////////// if (get_tx_id() == 0x0028) this->get_tx_subtree()->create("name").set("RFX400 TX"); else if (get_tx_id() == 0x0029) this->get_tx_subtree()->create("name").set("RFX900 TX"); else if (get_tx_id() == 0x0035) this->get_tx_subtree()->create("name").set("RFX1800 TX"); else if (get_tx_id() == 0x002a) this->get_tx_subtree()->create("name").set("RFX1200 TX"); else if (get_tx_id() == 0x002d) this->get_tx_subtree()->create("name").set("RFX2200 TX"); else if (get_tx_id() == 0x002b) this->get_tx_subtree()->create("name").set("RFX2400 TX"); else this->get_tx_subtree()->create("name").set("RFX TX"); this->get_tx_subtree() ->create("sensors/lo_locked") .set_publisher(std::bind(&rfx_xcvr::get_locked, this, dboard_iface::UNIT_TX)); this->get_tx_subtree()->create("gains"); // phony property so this dir exists this->get_tx_subtree() ->create("freq/value") .set_coercer(std::bind( &rfx_xcvr::set_lo_freq, this, dboard_iface::UNIT_TX, std::placeholders::_1)) .set((_freq_range.start() + _freq_range.stop()) / 2.0); this->get_tx_subtree()->create("freq/range").set(_freq_range); this->get_tx_subtree() ->create("antenna/value") .add_coerced_subscriber( std::bind(&rfx_xcvr::set_tx_ant, this, std::placeholders::_1)) .set(rfx_tx_antennas.at(0)); this->get_tx_subtree() ->create>("antenna/options") .set(rfx_tx_antennas); this->get_tx_subtree()->create("connection").set("IQ"); this->get_tx_subtree()->create("enabled").set(true); // always enabled this->get_tx_subtree()->create("use_lo_offset").set(true); this->get_tx_subtree() ->create("bandwidth/value") .set(2 * 20.0e6); // 20MHz low-pass, we want complex double-sided this->get_tx_subtree() ->create("bandwidth/range") .set(freq_range_t(2 * 20.0e6, 2 * 20.0e6)); // enable the clocks that we need this->get_iface()->set_clock_enabled(dboard_iface::UNIT_TX, true); this->get_iface()->set_clock_enabled(dboard_iface::UNIT_RX, true); // set the gpio directions and atr controls (identically) uint16_t output_enables = POWER_IO | ANTSW_IO | MIXER_IO; this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_TX, output_enables); this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, output_enables); this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, output_enables); this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, output_enables); // setup the tx atr (this does not change with antenna) this->get_iface()->set_atr_reg( dboard_iface::UNIT_TX, gpio_atr::ATR_REG_IDLE, _power_up | ANT_XX | MIXER_DIS); this->get_iface()->set_atr_reg( dboard_iface::UNIT_TX, gpio_atr::ATR_REG_RX_ONLY, _power_up | ANT_RX | MIXER_DIS); this->get_iface()->set_atr_reg( dboard_iface::UNIT_TX, gpio_atr::ATR_REG_TX_ONLY, _power_up | ANT_TX | MIXER_ENB); this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, gpio_atr::ATR_REG_FULL_DUPLEX, _power_up | ANT_TX | MIXER_ENB); // setup the rx atr (this does not change with antenna) this->get_iface()->set_atr_reg( dboard_iface::UNIT_RX, gpio_atr::ATR_REG_IDLE, _power_up | ANT_XX | MIXER_DIS); this->get_iface()->set_atr_reg( dboard_iface::UNIT_RX, gpio_atr::ATR_REG_TX_ONLY, _power_up | ANT_XX | MIXER_DIS); this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, gpio_atr::ATR_REG_FULL_DUPLEX, _power_up | ANT_RX2 | MIXER_ENB); } rfx_xcvr::~rfx_xcvr(void) { /* NOP */ } /*********************************************************************** * Antenna Handling **********************************************************************/ void rfx_xcvr::set_rx_ant(const std::string& ant) { // validate input assert_has(rfx_rx_antennas, ant, "rfx rx antenna name"); // set the rx atr regs that change with antenna setting if (ant == "CAL") { this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, gpio_atr::ATR_REG_TX_ONLY, _power_up | ANT_TXRX | MIXER_ENB); this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, gpio_atr::ATR_REG_FULL_DUPLEX, _power_up | ANT_TXRX | MIXER_ENB); this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, gpio_atr::ATR_REG_RX_ONLY, _power_up | MIXER_ENB | ANT_TXRX); } else { this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, gpio_atr::ATR_REG_TX_ONLY, _power_up | ANT_XX | MIXER_DIS); this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, gpio_atr::ATR_REG_FULL_DUPLEX, _power_up | ANT_RX2 | MIXER_ENB); this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, gpio_atr::ATR_REG_RX_ONLY, _power_up | MIXER_ENB | ((ant == "TX/RX") ? ANT_TXRX : ANT_RX2)); } // shadow the setting _rx_ant = ant; } void rfx_xcvr::set_tx_ant(const std::string& ant) { assert_has(rfx_tx_antennas, ant, "rfx tx antenna name"); // set the tx atr regs that change with antenna setting if (ant == "CAL") { this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, gpio_atr::ATR_REG_TX_ONLY, _power_up | ANT_RX | MIXER_ENB); this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, gpio_atr::ATR_REG_FULL_DUPLEX, _power_up | ANT_RX | MIXER_ENB); } else { this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, gpio_atr::ATR_REG_TX_ONLY, _power_up | ANT_TX | MIXER_ENB); this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, gpio_atr::ATR_REG_FULL_DUPLEX, _power_up | ANT_TX | MIXER_ENB); } } /*********************************************************************** * Gain Handling **********************************************************************/ static double rx_pga0_gain_to_dac_volts(double& gain, double range) { // voltage level constants (negative slope) static const double max_volts = .2, min_volts = 1.2; static const double slope = (max_volts - min_volts) / (range); // calculate the voltage for the aux dac double dac_volts = uhd::clip(gain * slope + min_volts, max_volts, min_volts); // the actual gain setting gain = (dac_volts - min_volts) / slope; return dac_volts; } double rfx_xcvr::set_rx_gain(double gain, const std::string& name) { assert_has(_rx_gain_ranges.keys(), name, "rfx rx gain name"); if (name == "PGA0") { double dac_volts = rx_pga0_gain_to_dac_volts( gain, (_rx_gain_ranges["PGA0"].stop() - _rx_gain_ranges["PGA0"].start())); // write the new voltage to the aux dac this->get_iface()->write_aux_dac( dboard_iface::UNIT_RX, dboard_iface::AUX_DAC_A, dac_volts); return gain; } else UHD_THROW_INVALID_CODE_PATH(); } /*********************************************************************** * Tuning **********************************************************************/ double rfx_xcvr::set_lo_freq(dboard_iface::unit_t unit, double target_freq) { UHD_LOGGER_TRACE("RFX") << boost::format("RFX tune: target frequency %f MHz") % (target_freq / 1e6); // clip the input target_freq = _freq_range.clip(target_freq); if (_div2[unit]) target_freq *= 2; // rfx400 rx is a special case with div2 in mixer, so adf4360 must output fundamental bool is_rx_rfx400 = ((get_rx_id() == 0x0024) && unit != dboard_iface::UNIT_TX); // map prescalers to the register enums static const uhd::dict prescaler_to_enum = map_list_of(8, adf4360_regs_t::PRESCALER_VALUE_8_9)( 16, adf4360_regs_t::PRESCALER_VALUE_16_17)( 32, adf4360_regs_t::PRESCALER_VALUE_32_33); // map band select clock dividers to enums static const uhd::dict bandsel_to_enum = map_list_of(1, adf4360_regs_t::BAND_SELECT_CLOCK_DIV_1)( 2, adf4360_regs_t::BAND_SELECT_CLOCK_DIV_2)( 4, adf4360_regs_t::BAND_SELECT_CLOCK_DIV_4)( 8, adf4360_regs_t::BAND_SELECT_CLOCK_DIV_8); double actual_freq = 0, ref_freq = this->get_iface()->get_clock_rate(unit); int R = 0, BS = 0, P = 0, B = 0, A = 0; /* * The goal here to to loop through possible R dividers, * band select clock dividers, and prescaler values. * Calculate the A and B counters for each set of values. * The loop exits when it meets all of the constraints. * The resulting loop values are loaded into the registers. * * fvco = [P*B + A] * fref/R * fvco*R/fref = P*B + A = N */ for (R = 2; R <= 32; R += 2) { // Search through all valid R values for (BS = 1; BS <= 8; BS *= 2) { // Search through all valid band selects if (ref_freq / R / BS > 1e6) { continue; // constraint on band select clock } for (P = 8; P <= 32; P *= 2) { // Search through all prescaler values // calculate B and A from N double N = target_freq * R / ref_freq; B = int(std::floor(N / P)); A = static_cast(std::lround(N - P * B)); if (B < A or B > 8191 or B < 3 or A > 31) { continue; // constraints on A, B } // calculate the actual frequency actual_freq = double(P * B + A) * ref_freq / R; if (actual_freq / P > 300e6) { continue; // constraint on prescaler output } // constraints met: exit loop goto done_loop; } } } done_loop: UHD_LOGGER_TRACE("RFX") << boost::format( "RFX tune: R=%d, BS=%d, P=%d, B=%d, A=%d, DIV2=%d") % R % BS % P % B % A % int(_div2[unit] && (!is_rx_rfx400)); // load the register values adf4360_regs_t regs; regs.core_power_level = adf4360_regs_t::CORE_POWER_LEVEL_10MA; regs.counter_operation = adf4360_regs_t::COUNTER_OPERATION_NORMAL; regs.muxout_control = adf4360_regs_t::MUXOUT_CONTROL_DLD; regs.phase_detector_polarity = adf4360_regs_t::PHASE_DETECTOR_POLARITY_POS; regs.charge_pump_output = adf4360_regs_t::CHARGE_PUMP_OUTPUT_NORMAL; regs.cp_gain_0 = adf4360_regs_t::CP_GAIN_0_SET1; regs.mute_till_ld = adf4360_regs_t::MUTE_TILL_LD_ENB; regs.output_power_level = adf4360_regs_t::OUTPUT_POWER_LEVEL_3_5MA; regs.current_setting1 = adf4360_regs_t::CURRENT_SETTING1_0_31MA; regs.current_setting2 = adf4360_regs_t::CURRENT_SETTING2_0_31MA; regs.power_down = adf4360_regs_t::POWER_DOWN_NORMAL_OP; regs.prescaler_value = prescaler_to_enum[P]; regs.a_counter = A; regs.b_counter = B; regs.cp_gain_1 = adf4360_regs_t::CP_GAIN_1_SET1; regs.divide_by_2_output = (_div2[unit] && (!is_rx_rfx400)) ? // Special case RFX400 RX Mixer divides by two adf4360_regs_t::DIVIDE_BY_2_OUTPUT_DIV2 : adf4360_regs_t::DIVIDE_BY_2_OUTPUT_FUND; regs.divide_by_2_prescaler = adf4360_regs_t::DIVIDE_BY_2_PRESCALER_FUND; regs.r_counter = R; regs.ablpw = adf4360_regs_t::ABLPW_3_0NS; regs.lock_detect_precision = adf4360_regs_t::LOCK_DETECT_PRECISION_5CYCLES; regs.test_mode_bit = 0; regs.band_select_clock_div = bandsel_to_enum[BS]; // write the registers std::vector addrs = list_of // correct power-up sequence to write registers (R, C, N) (adf4360_regs_t::ADDR_RCOUNTER)(adf4360_regs_t::ADDR_CONTROL)( adf4360_regs_t::ADDR_NCOUNTER); for (adf4360_regs_t::addr_t addr : addrs) { this->get_iface()->write_spi( unit, spi_config_t::EDGE_RISE, regs.get_reg(addr), 24); } // return the actual frequency if (_div2[unit]) actual_freq /= 2; UHD_LOGGER_TRACE("RFX") << boost::format("RFX tune: actual frequency %f MHz") % (actual_freq / 1e6); return actual_freq; }