//
// Copyright 2010-2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
// IO Pin functions
#define POWER_IO (1 << 7) // Low enables power supply
#define ANTSW_IO (1 << 6) // On TX DB, 0 = TX, 1 = RX, on RX DB 0 = main ant, 1 = RX2
#define MIXER_IO (1 << 5) // Enable appropriate mixer
#define LOCKDET_MASK (1 << 2) // Input pin
// Mixer constants
#define MIXER_ENB MIXER_IO
#define MIXER_DIS 0
// Antenna constants
#define ANT_TX 0 //the tx line is transmitting
#define ANT_RX ANTSW_IO //the tx line is receiving
#define ANT_TXRX 0 //the rx line is on txrx
#define ANT_RX2 ANTSW_IO //the rx line in on rx2
#define ANT_XX 0 //dont care how the antenna is set
#include "adf4360_regs.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace uhd;
using namespace uhd::usrp;
using namespace boost::assign;
/***********************************************************************
* The RFX Series constants
**********************************************************************/
static const std::vector rfx_tx_antennas = list_of("TX/RX")("CAL");
static const std::vector rfx_rx_antennas = list_of("TX/RX")("RX2")("CAL");
static const uhd::dict rfx_rx_gain_ranges = map_list_of
("PGA0", gain_range_t(0, 70, 0.022))
;
static const uhd::dict rfx400_rx_gain_ranges = map_list_of
("PGA0", gain_range_t(0, 45, 0.022))
;
/***********************************************************************
* The RFX series of dboards
**********************************************************************/
class rfx_xcvr : public xcvr_dboard_base{
public:
rfx_xcvr(
ctor_args_t args,
const freq_range_t &freq_range,
bool rx_div2, bool tx_div2
);
~rfx_xcvr(void);
private:
const freq_range_t _freq_range;
const uhd::dict _rx_gain_ranges;
const uhd::dict _div2;
std::string _rx_ant;
uhd::dict _rx_gains;
boost::uint16_t _power_up;
void set_rx_ant(const std::string &ant);
void set_tx_ant(const std::string &ant);
double set_rx_gain(double gain, const std::string &name);
/*!
* Set the LO frequency for the particular dboard unit.
* \param unit which unit rx or tx
* \param target_freq the desired frequency in Hz
* \return the actual frequency in Hz
*/
double set_lo_freq(dboard_iface::unit_t unit, double target_freq);
/*!
* Get the lock detect status of the LO.
* \param unit which unit rx or tx
* \return sensor for locked
*/
sensor_value_t get_locked(dboard_iface::unit_t unit){
const bool locked = (this->get_iface()->read_gpio(unit) & LOCKDET_MASK) != 0;
return sensor_value_t("LO", locked, "locked", "unlocked");
}
/*!
* Read the RSSI from the aux adc
* \return the rssi sensor in dBm
*/
sensor_value_t get_rssi(void){
//RSSI from VAGC vs RF Power, Fig 34, pg 13
double max_power = -3.0;
//constants for the rssi calculation
static const double min_v = 0.35, max_v = 1.0;
static const double rssi_dyn_range = 60;
//calculate the rssi from the voltage
double voltage = this->get_iface()->read_aux_adc(dboard_iface::UNIT_RX, dboard_iface::AUX_ADC_B);
const double rssi = max_power - rssi_dyn_range*(voltage - min_v)/(max_v - min_v);
return sensor_value_t("RSSI", rssi, "dBm");
}
};
/***********************************************************************
* Register the RFX dboards (min freq, max freq, rx div2, tx div2)
**********************************************************************/
static dboard_base::sptr make_rfx_flex400(dboard_base::ctor_args_t args){
return dboard_base::sptr(new rfx_xcvr(args, freq_range_t(400e6, 500e6), true, true));
}
static dboard_base::sptr make_rfx_flex900(dboard_base::ctor_args_t args){
return dboard_base::sptr(new rfx_xcvr(args, freq_range_t(750e6, 1050e6), true, true));
}
static dboard_base::sptr make_rfx_flex1800(dboard_base::ctor_args_t args){
return dboard_base::sptr(new rfx_xcvr(args, freq_range_t(1500e6, 2100e6), false, false));
}
static dboard_base::sptr make_rfx_flex1200(dboard_base::ctor_args_t args){
return dboard_base::sptr(new rfx_xcvr(args, freq_range_t(1150e6, 1450e6), true, true));
}
static dboard_base::sptr make_rfx_flex2200(dboard_base::ctor_args_t args){
return dboard_base::sptr(new rfx_xcvr(args, freq_range_t(2000e6, 2400e6), false, false));
}
static dboard_base::sptr make_rfx_flex2400(dboard_base::ctor_args_t args){
return dboard_base::sptr(new rfx_xcvr(args, freq_range_t(2300e6, 2900e6), false, false));
}
UHD_STATIC_BLOCK(reg_rfx_dboards){
dboard_manager::register_dboard(0x0024, 0x0028, &make_rfx_flex400, "RFX400");
dboard_manager::register_dboard(0x0025, 0x0029, &make_rfx_flex900, "RFX900");
dboard_manager::register_dboard(0x0034, 0x0035, &make_rfx_flex1800, "RFX1800");
dboard_manager::register_dboard(0x0026, 0x002a, &make_rfx_flex1200, "RFX1200");
dboard_manager::register_dboard(0x002c, 0x002d, &make_rfx_flex2200, "RFX2200");
dboard_manager::register_dboard(0x0027, 0x002b, &make_rfx_flex2400, "RFX2400");
}
/***********************************************************************
* Structors
**********************************************************************/
rfx_xcvr::rfx_xcvr(
ctor_args_t args,
const freq_range_t &freq_range,
bool rx_div2, bool tx_div2
):
xcvr_dboard_base(args),
_freq_range(freq_range),
_rx_gain_ranges((get_rx_id() == 0x0024)?
rfx400_rx_gain_ranges : rfx_rx_gain_ranges
),
_div2(map_list_of
(dboard_iface::UNIT_RX, rx_div2)
(dboard_iface::UNIT_TX, tx_div2)
),
_power_up((get_rx_id() == 0x0024 && get_tx_id() == 0x0028) ? POWER_IO : 0)
{
////////////////////////////////////////////////////////////////////
// Register RX properties
////////////////////////////////////////////////////////////////////
this->get_rx_subtree()->create("name").set("RFX RX");
this->get_rx_subtree()->create("sensors/lo_locked")
.publish(boost::bind(&rfx_xcvr::get_locked, this, dboard_iface::UNIT_RX));
this->get_rx_subtree()->create("sensors/rssi")
.publish(boost::bind(&rfx_xcvr::get_rssi, this));
BOOST_FOREACH(const std::string &name, _rx_gain_ranges.keys()){
this->get_rx_subtree()->create("gains/"+name+"/value")
.coerce(boost::bind(&rfx_xcvr::set_rx_gain, this, _1, name))
.set(_rx_gain_ranges[name].start());
this->get_rx_subtree()->create("gains/"+name+"/range")
.set(_rx_gain_ranges[name]);
}
this->get_rx_subtree()->create("freq/value")
.coerce(boost::bind(&rfx_xcvr::set_lo_freq, this, dboard_iface::UNIT_RX, _1))
.set((_freq_range.start() + _freq_range.stop())/2.0);
this->get_rx_subtree()->create("freq/range").set(_freq_range);
this->get_rx_subtree()->create("antenna/value")
.subscribe(boost::bind(&rfx_xcvr::set_rx_ant, this, _1))
.set("RX2");
this->get_rx_subtree()->create >("antenna/options")
.set(rfx_rx_antennas);
this->get_rx_subtree()->create("connection").set("QI");
this->get_rx_subtree()->create("enabled").set(true); //always enabled
this->get_rx_subtree()->create("use_lo_offset").set(false);
this->get_rx_subtree()->create("bandwidth/value").set(2*20.0e6); //20MHz low-pass, we want complex double-sided
this->get_rx_subtree()->create("bandwidth/range")
.set(freq_range_t(2*20.0e6, 2*20.0e6));
////////////////////////////////////////////////////////////////////
// Register TX properties
////////////////////////////////////////////////////////////////////
this->get_tx_subtree()->create("name").set("RFX TX");
this->get_tx_subtree()->create("sensors/lo_locked")
.publish(boost::bind(&rfx_xcvr::get_locked, this, dboard_iface::UNIT_TX));
this->get_tx_subtree()->create("gains"); //phony property so this dir exists
this->get_tx_subtree()->create("freq/value")
.coerce(boost::bind(&rfx_xcvr::set_lo_freq, this, dboard_iface::UNIT_TX, _1))
.set((_freq_range.start() + _freq_range.stop())/2.0);
this->get_tx_subtree()->create("freq/range").set(_freq_range);
this->get_tx_subtree()->create("antenna/value")
.subscribe(boost::bind(&rfx_xcvr::set_tx_ant, this, _1)).set(rfx_tx_antennas.at(0));
this->get_tx_subtree()->create >("antenna/options")
.set(rfx_tx_antennas);
this->get_tx_subtree()->create("connection").set("IQ");
this->get_tx_subtree()->create("enabled").set(true); //always enabled
this->get_tx_subtree()->create("use_lo_offset").set(true);
this->get_tx_subtree()->create("bandwidth/value").set(2*20.0e6); //20MHz low-pass, we want complex double-sided
this->get_tx_subtree()->create("bandwidth/range")
.set(freq_range_t(2*20.0e6, 2*20.0e6));
//enable the clocks that we need
this->get_iface()->set_clock_enabled(dboard_iface::UNIT_TX, true);
this->get_iface()->set_clock_enabled(dboard_iface::UNIT_RX, true);
//set the gpio directions and atr controls (identically)
boost::uint16_t output_enables = POWER_IO | ANTSW_IO | MIXER_IO;
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_TX, output_enables);
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, output_enables);
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, output_enables);
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, output_enables);
//setup the tx atr (this does not change with antenna)
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_IDLE, _power_up | ANT_XX | MIXER_DIS);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_RX_ONLY, _power_up | ANT_RX | MIXER_DIS);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_TX_ONLY, _power_up | ANT_TX | MIXER_ENB);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_FULL_DUPLEX, _power_up | ANT_TX | MIXER_ENB);
//setup the rx atr (this does not change with antenna)
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_IDLE, _power_up | ANT_XX | MIXER_DIS);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_TX_ONLY, _power_up | ANT_XX | MIXER_DIS);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_FULL_DUPLEX, _power_up | ANT_RX2| MIXER_ENB);
}
rfx_xcvr::~rfx_xcvr(void){
/* NOP */
}
/***********************************************************************
* Antenna Handling
**********************************************************************/
void rfx_xcvr::set_rx_ant(const std::string &ant){
//validate input
assert_has(rfx_rx_antennas, ant, "rfx rx antenna name");
//set the rx atr regs that change with antenna setting
if (ant == "CAL") {
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_TX_ONLY, _power_up | ANT_TXRX | MIXER_DIS);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_FULL_DUPLEX, _power_up | ANT_TXRX | MIXER_ENB);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_RX_ONLY, _power_up | MIXER_ENB | ANT_TXRX );
}
else {
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_TX_ONLY, _power_up | ANT_XX | MIXER_DIS);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_FULL_DUPLEX, _power_up | ANT_RX2| MIXER_ENB);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_RX_ONLY, _power_up | MIXER_ENB |
((ant == "TX/RX")? ANT_TXRX : ANT_RX2));
}
//shadow the setting
_rx_ant = ant;
}
void rfx_xcvr::set_tx_ant(const std::string &ant){
assert_has(rfx_tx_antennas, ant, "rfx tx antenna name");
//set the tx atr regs that change with antenna setting
if (ant == "CAL") {
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_TX_ONLY, _power_up | ANT_RX | MIXER_ENB);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_FULL_DUPLEX, _power_up | ANT_RX | MIXER_ENB);
}
else {
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_TX_ONLY, _power_up | ANT_TX | MIXER_ENB);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_FULL_DUPLEX, _power_up | ANT_TX | MIXER_ENB);
}
}
/***********************************************************************
* Gain Handling
**********************************************************************/
static double rx_pga0_gain_to_dac_volts(double &gain, double range){
//voltage level constants (negative slope)
static const double max_volts = .2, min_volts = 1.2;
static const double slope = (max_volts-min_volts)/(range);
//calculate the voltage for the aux dac
double dac_volts = uhd::clip(gain*slope + min_volts, max_volts, min_volts);
//the actual gain setting
gain = (dac_volts - min_volts)/slope;
return dac_volts;
}
double rfx_xcvr::set_rx_gain(double gain, const std::string &name){
assert_has(_rx_gain_ranges.keys(), name, "rfx rx gain name");
if(name == "PGA0"){
double dac_volts = rx_pga0_gain_to_dac_volts(gain,
(_rx_gain_ranges["PGA0"].stop() - _rx_gain_ranges["PGA0"].start()));
//write the new voltage to the aux dac
this->get_iface()->write_aux_dac(dboard_iface::UNIT_RX, dboard_iface::AUX_DAC_A, dac_volts);
return gain;
}
else UHD_THROW_INVALID_CODE_PATH();
}
/***********************************************************************
* Tuning
**********************************************************************/
double rfx_xcvr::set_lo_freq(
dboard_iface::unit_t unit,
double target_freq
){
UHD_LOGV(often) << boost::format(
"RFX tune: target frequency %f Mhz"
) % (target_freq/1e6) << std::endl;
//clip the input
target_freq = _freq_range.clip(target_freq);
if (_div2[unit]) target_freq *= 2;
//rfx400 rx is a special case with div2 in mixer, so adf4360 must output fundamental
bool is_rx_rfx400 = ((get_rx_id() == 0x0024) && unit != dboard_iface::UNIT_TX);
//map prescalers to the register enums
static const uhd::dict prescaler_to_enum = map_list_of
(8, adf4360_regs_t::PRESCALER_VALUE_8_9)
(16, adf4360_regs_t::PRESCALER_VALUE_16_17)
(32, adf4360_regs_t::PRESCALER_VALUE_32_33)
;
//map band select clock dividers to enums
static const uhd::dict bandsel_to_enum = map_list_of
(1, adf4360_regs_t::BAND_SELECT_CLOCK_DIV_1)
(2, adf4360_regs_t::BAND_SELECT_CLOCK_DIV_2)
(4, adf4360_regs_t::BAND_SELECT_CLOCK_DIV_4)
(8, adf4360_regs_t::BAND_SELECT_CLOCK_DIV_8)
;
double actual_freq=0, ref_freq = this->get_iface()->get_clock_rate(unit);
int R=0, BS=0, P=0, B=0, A=0;
/*
* The goal here to to loop though possible R dividers,
* band select clock dividers, and prescaler values.
* Calculate the A and B counters for each set of values.
* The loop exists when it meets all of the constraints.
* The resulting loop values are loaded into the registers.
*
* fvco = [P*B + A] * fref/R
* fvco*R/fref = P*B + A = N
*/
for(R = 2; R <= 32; R+=2){
BOOST_FOREACH(BS, bandsel_to_enum.keys()){
if (ref_freq/R/BS > 1e6) continue; //constraint on band select clock
BOOST_FOREACH(P, prescaler_to_enum.keys()){
//calculate B and A from N
double N = target_freq*R/ref_freq;
B = int(std::floor(N/P));
A = boost::math::iround(N - P*B);
if (B < A or B > 8191 or B < 3 or A > 31) continue; //constraints on A, B
//calculate the actual frequency
actual_freq = double(P*B + A)*ref_freq/R;
if (actual_freq/P > 300e6) continue; //constraint on prescaler output
//constraints met: exit loop
goto done_loop;
}
}
} done_loop:
UHD_LOGV(often) << boost::format(
"RFX tune: R=%d, BS=%d, P=%d, B=%d, A=%d, DIV2=%d"
) % R % BS % P % B % A % int(_div2[unit] && (!is_rx_rfx400)) << std::endl;
//load the register values
adf4360_regs_t regs;
regs.core_power_level = adf4360_regs_t::CORE_POWER_LEVEL_10MA;
regs.counter_operation = adf4360_regs_t::COUNTER_OPERATION_NORMAL;
regs.muxout_control = adf4360_regs_t::MUXOUT_CONTROL_DLD;
regs.phase_detector_polarity = adf4360_regs_t::PHASE_DETECTOR_POLARITY_POS;
regs.charge_pump_output = adf4360_regs_t::CHARGE_PUMP_OUTPUT_NORMAL;
regs.cp_gain_0 = adf4360_regs_t::CP_GAIN_0_SET1;
regs.mute_till_ld = adf4360_regs_t::MUTE_TILL_LD_ENB;
regs.output_power_level = adf4360_regs_t::OUTPUT_POWER_LEVEL_3_5MA;
regs.current_setting1 = adf4360_regs_t::CURRENT_SETTING1_0_31MA;
regs.current_setting2 = adf4360_regs_t::CURRENT_SETTING2_0_31MA;
regs.power_down = adf4360_regs_t::POWER_DOWN_NORMAL_OP;
regs.prescaler_value = prescaler_to_enum[P];
regs.a_counter = A;
regs.b_counter = B;
regs.cp_gain_1 = adf4360_regs_t::CP_GAIN_1_SET1;
regs.divide_by_2_output = (_div2[unit] && (!is_rx_rfx400)) ? // Special case RFX400 RX Mixer divides by two
adf4360_regs_t::DIVIDE_BY_2_OUTPUT_DIV2 :
adf4360_regs_t::DIVIDE_BY_2_OUTPUT_FUND ;
regs.divide_by_2_prescaler = adf4360_regs_t::DIVIDE_BY_2_PRESCALER_FUND;
regs.r_counter = R;
regs.ablpw = adf4360_regs_t::ABLPW_3_0NS;
regs.lock_detect_precision = adf4360_regs_t::LOCK_DETECT_PRECISION_5CYCLES;
regs.test_mode_bit = 0;
regs.band_select_clock_div = bandsel_to_enum[BS];
//write the registers
std::vector addrs = list_of //correct power-up sequence to write registers (R, C, N)
(adf4360_regs_t::ADDR_RCOUNTER)
(adf4360_regs_t::ADDR_CONTROL)
(adf4360_regs_t::ADDR_NCOUNTER)
;
BOOST_FOREACH(adf4360_regs_t::addr_t addr, addrs){
this->get_iface()->write_spi(
unit, spi_config_t::EDGE_RISE,
regs.get_reg(addr), 24
);
}
//return the actual frequency
if (_div2[unit]) actual_freq /= 2;
UHD_LOGV(often) << boost::format(
"RFX tune: actual frequency %f Mhz"
) % (actual_freq/1e6) << std::endl;
return actual_freq;
}