//
// Copyright 2011-2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "max2870_regs.hpp"
#include "db_sbx_common.hpp"
#include
#include
using namespace uhd;
using namespace uhd::usrp;
using namespace boost::assign;
/***********************************************************************
* Structors
**********************************************************************/
sbx_xcvr::cbx::cbx(sbx_xcvr *_self_sbx_xcvr) {
//register the handle to our base CBX class
self_base = _self_sbx_xcvr;
}
sbx_xcvr::cbx::~cbx(void){
/* NOP */
}
/***********************************************************************
* Tuning
**********************************************************************/
double sbx_xcvr::cbx::set_lo_freq(dboard_iface::unit_t unit, double target_freq) {
UHD_LOGV(often) << boost::format(
"CBX tune: target frequency %f MHz"
) % (target_freq/1e6) << std::endl;
/*
* If the user sets 'mode_n=integer' in the tuning args, the user wishes to
* tune in Integer-N mode, which can result in better spur
* performance on some mixers. The default is fractional tuning.
*/
property_tree::sptr subtree = (unit == dboard_iface::UNIT_RX) ? self_base->get_rx_subtree()
: self_base->get_tx_subtree();
device_addr_t tune_args = subtree->access("tune_args").get();
bool is_int_n = boost::iequals(tune_args.get("mode_n",""), "integer");
//clip the input
target_freq = cbx_freq_range.clip(target_freq);
//map mode setting to valid integer divider (N) values
static const uhd::range_t int_n_mode_div_range(16,4095,1);
static const uhd::range_t frac_n_mode_div_range(19,4091,1);
//map rf divider select output dividers to enums
static const uhd::dict rfdivsel_to_enum = map_list_of
(1, max2870_regs_t::RF_DIVIDER_SELECT_DIV1)
(2, max2870_regs_t::RF_DIVIDER_SELECT_DIV2)
(4, max2870_regs_t::RF_DIVIDER_SELECT_DIV4)
(8, max2870_regs_t::RF_DIVIDER_SELECT_DIV8)
(16, max2870_regs_t::RF_DIVIDER_SELECT_DIV16)
(32, max2870_regs_t::RF_DIVIDER_SELECT_DIV32)
(64, max2870_regs_t::RF_DIVIDER_SELECT_DIV64)
(128, max2870_regs_t::RF_DIVIDER_SELECT_DIV128)
;
double actual_freq, pfd_freq;
double ref_freq = self_base->get_iface()->get_clock_rate(unit);
int R=0, BS=0, N=0, FRAC=0, MOD=4095;
int RFdiv = 1;
max2870_regs_t::reference_divide_by_2_t T = max2870_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED;
max2870_regs_t::reference_doubler_t D = max2870_regs_t::REFERENCE_DOUBLER_DISABLED;
//Reference doubler for 50% duty cycle
// if ref_freq < 12.5MHz enable regs.reference_divide_by_2
//NOTE: MAX2870 goes down to 10MHz ref vs. 12.5MHz on ADF4351
if(ref_freq <= 10.0e6) D = max2870_regs_t::REFERENCE_DOUBLER_ENABLED;
//increase RF divider until acceptable VCO frequency
double vco_freq = target_freq;
//NOTE: MIN freq for MAX2870 VCO is 3GHz vs. 2.2GHz on ADF4351
while (vco_freq < 3e9) {
vco_freq *= 2;
RFdiv *= 2;
}
/*
* The goal here is to loop though possible R dividers,
* band select clock dividers, N (int) dividers, and FRAC
* (frac) dividers.
*
* Calculate the N and F dividers for each set of values.
* The loop exits when it meets all of the constraints.
* The resulting loop values are loaded into the registers.
*
* from pg.21
*
* f_pfd = f_ref*(1+D)/(R*(1+T))
* f_vco = (N + (FRAC/MOD))*f_pfd
* N = f_vco/f_pfd - FRAC/MOD = f_vco*((R*(T+1))/(f_ref*(1+D))) - FRAC/MOD
* f_rf = f_vco/RFdiv
*/
for(R = 1; R <= 1023; R+=1){
//PFD input frequency = f_ref/R ... ignoring Reference doubler/divide-by-2 (D & T)
pfd_freq = ref_freq*(1+D)/(R*(1+T));
//keep the PFD frequency at or below 25MHz
if (pfd_freq > 25e6) continue;
//ignore fractional part of tuning
N = int(vco_freq/pfd_freq);
//Fractional-N calculation
FRAC = int(boost::math::round((vco_freq/pfd_freq - N)*MOD));
if(is_int_n) {
if (FRAC > (MOD / 2)) { //Round integer such that actual freq is closest to target
N++;
}
FRAC = 0;
}
//keep N within int divider requirements
if(is_int_n) {
if(N < int_n_mode_div_range.start()) continue;
if(N > int_n_mode_div_range.stop()) continue;
} else {
if(N < frac_n_mode_div_range.start()) continue;
if(N > frac_n_mode_div_range.stop()) continue;
}
//keep pfd freq low enough to achieve 50kHz BS clock
BS = std::ceil(pfd_freq / 50e3);
if(BS <= 1023) break;
}
UHD_ASSERT_THROW(R <= 1023);
//Reference divide-by-2 for 50% duty cycle
// if R even, move one divide by 2 to to regs.reference_divide_by_2
if(R % 2 == 0){
T = max2870_regs_t::REFERENCE_DIVIDE_BY_2_ENABLED;
R /= 2;
}
//actual frequency calculation
actual_freq = double((N + (double(FRAC)/double(MOD)))*ref_freq*(1+int(D))/(R*(1+int(T)))/RFdiv);
boost::uint16_t rx_id = self_base->get_rx_id().to_uint16();
std::string board_name = (rx_id == 0x0085) ? "CBX-120" : "CBX";
UHD_LOGV(often)
<< boost::format("%s Intermediates: ref=%0.2f, outdiv=%f, fbdiv=%f"
) % board_name.c_str() % (ref_freq*(1+int(D))/(R*(1+int(T)))) % double(RFdiv*2) % double(N + double(FRAC)/double(MOD)) << std::endl
<< boost::format("%s tune: R=%d, BS=%d, N=%d, FRAC=%d, MOD=%d, T=%d, D=%d, RFdiv=%d, type=%s"
) % board_name.c_str() % R % BS % N % FRAC % MOD % T % D % RFdiv % ((is_int_n) ? "Integer-N" : "Fractional") << std::endl
<< boost::format("%s Frequencies (MHz): REQ=%0.2f, ACT=%0.2f, VCO=%0.2f, PFD=%0.2f, BAND=%0.2f"
) % board_name.c_str() % (target_freq/1e6) % (actual_freq/1e6) % (vco_freq/1e6) % (pfd_freq/1e6) % (pfd_freq/BS/1e6) << std::endl;
//load the register values
max2870_regs_t regs;
if ((unit == dboard_iface::UNIT_TX) and (actual_freq == sbx_tx_lo_2dbm.clip(actual_freq)))
regs.output_power = max2870_regs_t::OUTPUT_POWER_2DBM;
else
regs.output_power = max2870_regs_t::OUTPUT_POWER_5DBM;
//set frac/int CPL mode
max2870_regs_t::cpl_t cpl;
max2870_regs_t::ldf_t ldf;
max2870_regs_t::cpoc_t cpoc;
if(is_int_n) {
cpl = max2870_regs_t::CPL_DISABLED;
cpoc = max2870_regs_t::CPOC_ENABLED;
ldf = max2870_regs_t::LDF_INT_N;
} else {
cpl = max2870_regs_t::CPL_ENABLED;
ldf = max2870_regs_t::LDF_FRAC_N;
cpoc = max2870_regs_t::CPOC_DISABLED;
}
regs.frac_12_bit = FRAC;
regs.int_16_bit = N;
regs.mod_12_bit = MOD;
regs.clock_divider_12_bit = std::max(1, int(std::ceil(400e-6*pfd_freq/MOD)));
regs.feedback_select = (target_freq >= 3.0e9) ? max2870_regs_t::FEEDBACK_SELECT_DIVIDED : max2870_regs_t::FEEDBACK_SELECT_FUNDAMENTAL;
regs.r_counter_10_bit = R;
regs.reference_divide_by_2 = T;
regs.reference_doubler = D;
regs.band_select_clock_div = (BS & 0x0FF);
regs.bs_msb = (BS & 0x300) >>8;
UHD_ASSERT_THROW(rfdivsel_to_enum.has_key(RFdiv));
regs.rf_divider_select = rfdivsel_to_enum[RFdiv];
regs.int_n_mode = (is_int_n) ? max2870_regs_t::INT_N_MODE_INT_N : max2870_regs_t::INT_N_MODE_FRAC_N;
regs.cpl = cpl;
regs.ldf = ldf;
regs.cpoc = cpoc;
//write the registers
//correct power-up sequence to write registers (5, 4, 3, 2, 1, 0)
int addr;
for(addr=5; addr>=0; addr--){
UHD_LOGV(often) << boost::format(
"%s SPI Reg (0x%02x): 0x%08x"
) % board_name.c_str() % addr % regs.get_reg(addr) << std::endl;
self_base->get_iface()->write_spi(
unit, spi_config_t::EDGE_RISE,
regs.get_reg(addr), 32
);
}
//return the actual frequency
UHD_LOGV(often) << boost::format(
"%s tune: actual frequency %f MHz"
) % board_name.c_str() % (actual_freq/1e6) << std::endl;
return actual_freq;
}