// // Copyright 2011-2014 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "max2870_regs.hpp" #include "db_sbx_common.hpp" #include #include using namespace uhd; using namespace uhd::usrp; using namespace boost::assign; /*********************************************************************** * Structors **********************************************************************/ sbx_xcvr::cbx::cbx(sbx_xcvr *_self_sbx_xcvr) { //register the handle to our base CBX class self_base = _self_sbx_xcvr; } sbx_xcvr::cbx::~cbx(void){ /* NOP */ } /*********************************************************************** * Tuning **********************************************************************/ double sbx_xcvr::cbx::set_lo_freq(dboard_iface::unit_t unit, double target_freq) { UHD_LOGV(often) << boost::format( "CBX tune: target frequency %f Mhz" ) % (target_freq/1e6) << std::endl; /* * If the user sets 'mode_n=integer' in the tuning args, the user wishes to * tune in Integer-N mode, which can result in better spur * performance on some mixers. The default is fractional tuning. */ property_tree::sptr subtree = (unit == dboard_iface::UNIT_RX) ? self_base->get_rx_subtree() : self_base->get_tx_subtree(); device_addr_t tune_args = subtree->access("tune_args").get(); bool is_int_n = boost::iequals(tune_args.get("mode_n",""), "integer"); //clip the input target_freq = cbx_freq_range.clip(target_freq); //map mode setting to valid integer divider (N) values static const uhd::range_t int_n_mode_div_range(16,4095,1); static const uhd::range_t frac_n_mode_div_range(19,4091,1); //map rf divider select output dividers to enums static const uhd::dict rfdivsel_to_enum = map_list_of (1, max2870_regs_t::RF_DIVIDER_SELECT_DIV1) (2, max2870_regs_t::RF_DIVIDER_SELECT_DIV2) (4, max2870_regs_t::RF_DIVIDER_SELECT_DIV4) (8, max2870_regs_t::RF_DIVIDER_SELECT_DIV8) (16, max2870_regs_t::RF_DIVIDER_SELECT_DIV16) (32, max2870_regs_t::RF_DIVIDER_SELECT_DIV32) (64, max2870_regs_t::RF_DIVIDER_SELECT_DIV64) (128, max2870_regs_t::RF_DIVIDER_SELECT_DIV128) ; double actual_freq, pfd_freq; double ref_freq = self_base->get_iface()->get_clock_rate(unit); int R=0, BS=0, N=0, FRAC=0, MOD=4095; int RFdiv = 1; max2870_regs_t::reference_divide_by_2_t T = max2870_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED; max2870_regs_t::reference_doubler_t D = max2870_regs_t::REFERENCE_DOUBLER_DISABLED; //Reference doubler for 50% duty cycle // if ref_freq < 12.5MHz enable regs.reference_divide_by_2 //NOTE: MAX2870 goes down to 10MHz ref vs. 12.5MHz on ADF4351 if(ref_freq <= 10.0e6) D = max2870_regs_t::REFERENCE_DOUBLER_ENABLED; //increase RF divider until acceptable VCO frequency double vco_freq = target_freq; //NOTE: MIN freq for MAX2870 VCO is 3GHz vs. 2.2GHz on ADF4351 while (vco_freq < 3e9) { vco_freq *= 2; RFdiv *= 2; } /* * The goal here is to loop though possible R dividers, * band select clock dividers, N (int) dividers, and FRAC * (frac) dividers. * * Calculate the N and F dividers for each set of values. * The loop exits when it meets all of the constraints. * The resulting loop values are loaded into the registers. * * from pg.21 * * f_pfd = f_ref*(1+D)/(R*(1+T)) * f_vco = (N + (FRAC/MOD))*f_pfd * N = f_vco/f_pfd - FRAC/MOD = f_vco*((R*(T+1))/(f_ref*(1+D))) - FRAC/MOD * f_rf = f_vco/RFdiv */ for(R = 1; R <= 1023; R+=1){ //PFD input frequency = f_ref/R ... ignoring Reference doubler/divide-by-2 (D & T) pfd_freq = ref_freq*(1+D)/(R*(1+T)); //keep the PFD frequency at or below 25MHz if (pfd_freq > 25e6) continue; //ignore fractional part of tuning N = int(vco_freq/pfd_freq); //Fractional-N calculation FRAC = int(boost::math::round((vco_freq/pfd_freq - N)*MOD)); if(is_int_n) { if (FRAC > (MOD / 2)) { //Round integer such that actual freq is closest to target N++; } FRAC = 0; } //keep N within int divider requirements if(is_int_n) { if(N < int_n_mode_div_range.start()) continue; if(N > int_n_mode_div_range.stop()) continue; } else { if(N < frac_n_mode_div_range.start()) continue; if(N > frac_n_mode_div_range.stop()) continue; } //keep pfd freq low enough to achieve 50kHz BS clock BS = std::ceil(pfd_freq / 50e3); if(BS <= 1023) break; } UHD_ASSERT_THROW(R <= 1023); //Reference divide-by-2 for 50% duty cycle // if R even, move one divide by 2 to to regs.reference_divide_by_2 if(R % 2 == 0){ T = max2870_regs_t::REFERENCE_DIVIDE_BY_2_ENABLED; R /= 2; } //actual frequency calculation actual_freq = double((N + (double(FRAC)/double(MOD)))*ref_freq*(1+int(D))/(R*(1+int(T)))/RFdiv); boost::uint16_t rx_id = self_base->get_rx_id().to_uint16(); std::string board_name = (rx_id == 0x0085) ? "CBX-120" : "CBX"; UHD_LOGV(often) << boost::format("%s Intermediates: ref=%0.2f, outdiv=%f, fbdiv=%f" ) % board_name.c_str() % (ref_freq*(1+int(D))/(R*(1+int(T)))) % double(RFdiv*2) % double(N + double(FRAC)/double(MOD)) << std::endl << boost::format("%s tune: R=%d, BS=%d, N=%d, FRAC=%d, MOD=%d, T=%d, D=%d, RFdiv=%d, type=%s" ) % board_name.c_str() % R % BS % N % FRAC % MOD % T % D % RFdiv % ((is_int_n) ? "Integer-N" : "Fractional") << std::endl << boost::format("%s Frequencies (MHz): REQ=%0.2f, ACT=%0.2f, VCO=%0.2f, PFD=%0.2f, BAND=%0.2f" ) % board_name.c_str() % (target_freq/1e6) % (actual_freq/1e6) % (vco_freq/1e6) % (pfd_freq/1e6) % (pfd_freq/BS/1e6) << std::endl; //load the register values max2870_regs_t regs; if ((unit == dboard_iface::UNIT_TX) and (actual_freq == sbx_tx_lo_2dbm.clip(actual_freq))) regs.output_power = max2870_regs_t::OUTPUT_POWER_2DBM; else regs.output_power = max2870_regs_t::OUTPUT_POWER_5DBM; //set frac/int CPL mode max2870_regs_t::cpl_t cpl; max2870_regs_t::ldf_t ldf; max2870_regs_t::cpoc_t cpoc; if(is_int_n) { cpl = max2870_regs_t::CPL_DISABLED; cpoc = max2870_regs_t::CPOC_ENABLED; ldf = max2870_regs_t::LDF_INT_N; } else { cpl = max2870_regs_t::CPL_ENABLED; ldf = max2870_regs_t::LDF_FRAC_N; cpoc = max2870_regs_t::CPOC_DISABLED; } regs.frac_12_bit = FRAC; regs.int_16_bit = N; regs.mod_12_bit = MOD; regs.clock_divider_12_bit = std::max(1, int(std::ceil(400e-6*pfd_freq/MOD))); regs.feedback_select = (target_freq >= 3.0e9) ? max2870_regs_t::FEEDBACK_SELECT_DIVIDED : max2870_regs_t::FEEDBACK_SELECT_FUNDAMENTAL; regs.r_counter_10_bit = R; regs.reference_divide_by_2 = T; regs.reference_doubler = D; regs.band_select_clock_div = (BS & 0x0FF); regs.bs_msb = (BS & 0x300) >>8; UHD_ASSERT_THROW(rfdivsel_to_enum.has_key(RFdiv)); regs.rf_divider_select = rfdivsel_to_enum[RFdiv]; regs.int_n_mode = (is_int_n) ? max2870_regs_t::INT_N_MODE_INT_N : max2870_regs_t::INT_N_MODE_FRAC_N; regs.cpl = cpl; regs.ldf = ldf; regs.cpoc = cpoc; //write the registers //correct power-up sequence to write registers (5, 4, 3, 2, 1, 0) int addr; for(addr=5; addr>=0; addr--){ UHD_LOGV(often) << boost::format( "%s SPI Reg (0x%02x): 0x%08x" ) % board_name.c_str() % addr % regs.get_reg(addr) << std::endl; self_base->get_iface()->write_spi( unit, spi_config_t::EDGE_RISE, regs.get_reg(addr), 32 ); } //return the actual frequency UHD_LOGV(often) << boost::format( "%s tune: actual frequency %f Mhz" ) % board_name.c_str() % (actual_freq/1e6) << std::endl; return actual_freq; }