//
// Copyright 2013-2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "adf5355.hpp"
#include "adf5355_regs.hpp"
#include
#include //gcd
#include
using namespace uhd;
template
data_t clamp(data_t val, data_t min, data_t max) {
return (val < min) ? min : ((val > max) ? max : val);
}
template
double todbl(data_t val) {
return static_cast(val);
}
static const double ADF5355_DOUBLER_MAX_REF_FREQ = 60e6;
static const double ADF5355_MAX_FREQ_PFD = 125e6;
static const double ADF5355_PRESCALER_THRESH = 7e9;
static const double ADF5355_MIN_VCO_FREQ = 3.4e9;
static const double ADF5355_MAX_VCO_FREQ = 6.8e9;
static const double ADF5355_MAX_OUT_FREQ = 6.8e9;
static const double ADF5355_MIN_OUT_FREQ = (3.4e9 / 64);
static const double ADF5355_MAX_OUTB_FREQ = (6.8e9 * 2);
static const double ADF5355_MIN_OUTB_FREQ = (3.4e9 * 2);
static const double ADF5355_PHASE_RESYNC_TIME = 400e-6;
static const boost::uint32_t ADF5355_MOD1 = 16777216;
static const boost::uint32_t ADF5355_MAX_MOD2 = 16384;
static const boost::uint16_t ADF5355_MIN_INT_PRESCALER_89 = 75;
class adf5355_impl : public adf5355_iface
{
public:
adf5355_impl(write_fn_t write_fn) :
_write_fn(write_fn),
_regs(),
_rewrite_regs(true),
_wait_time_us(0),
_ref_freq(0.0),
_pfd_freq(0.0),
_fb_after_divider(false)
{
_regs.counter_reset = adf5355_regs_t::COUNTER_RESET_DISABLED;
_regs.cp_three_state = adf5355_regs_t::CP_THREE_STATE_DISABLED;
_regs.power_down = adf5355_regs_t::POWER_DOWN_DISABLED;
_regs.pd_polarity = adf5355_regs_t::PD_POLARITY_POSITIVE;
_regs.mux_logic = adf5355_regs_t::MUX_LOGIC_3_3V;
_regs.ref_mode = adf5355_regs_t::REF_MODE_SINGLE;
_regs.muxout = adf5355_regs_t::MUXOUT_DLD;
_regs.double_buff_div = adf5355_regs_t::DOUBLE_BUFF_DIV_DISABLED;
_regs.rf_out_a_enabled = adf5355_regs_t::RF_OUT_A_ENABLED_ENABLED;
_regs.rf_out_b_enabled = adf5355_regs_t::RF_OUT_B_ENABLED_DISABLED;
_regs.mute_till_lock_detect = adf5355_regs_t::MUTE_TILL_LOCK_DETECT_MUTE_DISABLED;
_regs.ld_mode = adf5355_regs_t::LD_MODE_FRAC_N;
_regs.frac_n_ld_precision = adf5355_regs_t::FRAC_N_LD_PRECISION_5NS;
_regs.ld_cyc_count = adf5355_regs_t::LD_CYC_COUNT_1024;
_regs.le_sync = adf5355_regs_t::LE_SYNC_LE_SYNCED_TO_REFIN;
_regs.phase_resync = adf5355_regs_t::PHASE_RESYNC_DISABLED;
_regs.reference_divide_by_2 = adf5355_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED;
_regs.reference_doubler = adf5355_regs_t::REFERENCE_DOUBLER_DISABLED;
_regs.autocal_en = adf5355_regs_t::AUTOCAL_EN_ENABLED;
_regs.prescaler = adf5355_regs_t::PRESCALER_4_5;
_regs.charge_pump_current = adf5355_regs_t::CHARGE_PUMP_CURRENT_0_94MA;
_regs.gated_bleed = adf5355_regs_t::GATED_BLEED_DISABLED;
_regs.negative_bleed = adf5355_regs_t::NEGATIVE_BLEED_ENABLED;
_regs.feedback_select = adf5355_regs_t::FEEDBACK_SELECT_FUNDAMENTAL;
_regs.output_power = adf5355_regs_t::OUTPUT_POWER_5DBM;
_regs.cp_bleed_current = 2;
_regs.r_counter_10_bit = 8;
_regs.ld_cyc_count = adf5355_regs_t::LD_CYC_COUNT_1024;
_regs.loss_of_lock_mode = adf5355_regs_t::LOSS_OF_LOCK_MODE_DISABLED;
_regs.frac_n_ld_precision = adf5355_regs_t::FRAC_N_LD_PRECISION_5NS;
_regs.ld_mode = adf5355_regs_t::LD_MODE_FRAC_N;
_regs.vco_band_div = 3;
_regs.timeout = 11;
_regs.auto_level_timeout = 30;
_regs.synth_lock_timeout = 12;
_regs.adc_clock_divider = 16;
_regs.adc_conversion = adf5355_regs_t::ADC_CONVERSION_ENABLED;
_regs.adc_enable = adf5355_regs_t::ADC_ENABLE_ENABLED;
_regs.phase_resync_clk_div = 0;
}
~adf5355_impl()
{
_regs.power_down = adf5355_regs_t::POWER_DOWN_ENABLED;
commit();
}
void set_feedback_select(feedback_sel_t fb_sel)
{
_fb_after_divider = (fb_sel == FB_SEL_DIVIDED);
if (_fb_after_divider) {
_regs.feedback_select = adf5355_regs_t::FEEDBACK_SELECT_DIVIDED;
} else {
_regs.feedback_select = adf5355_regs_t::FEEDBACK_SELECT_FUNDAMENTAL;
}
}
void set_reference_freq(double fref, bool force = false)
{
//Skip the body if the reference frequency does not change
if (uhd::math::frequencies_are_equal(fref, _ref_freq) and (not force))
return;
_ref_freq = fref;
//-----------------------------------------------------------
//Set reference settings
//Reference doubler for 50% duty cycle
bool doubler_en = (_ref_freq <= ADF5355_DOUBLER_MAX_REF_FREQ);
/* Calculate and maximize PFD frequency */
// TODO Target PFD should be configurable
/* TwinRX requires PFD of 6.25 MHz or less */
const double TWINRX_PFD_FREQ = 6.25e6;
_pfd_freq = TWINRX_PFD_FREQ;
int ref_div_factor = 16;
//Reference divide-by-2 for 50% duty cycle
// if R even, move one divide by 2 to to regs.reference_divide_by_2
bool div2_en = (ref_div_factor % 2 == 0);
if (div2_en) {
ref_div_factor /= 2;
}
_regs.reference_divide_by_2 = div2_en ?
adf5355_regs_t::REFERENCE_DIVIDE_BY_2_ENABLED :
adf5355_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED;
_regs.reference_doubler = doubler_en ?
adf5355_regs_t::REFERENCE_DOUBLER_ENABLED :
adf5355_regs_t::REFERENCE_DOUBLER_DISABLED;
_regs.r_counter_10_bit = ref_div_factor;
UHD_ASSERT_THROW((_regs.r_counter_10_bit & ((boost::uint16_t)~0x3FF)) == 0);
//-----------------------------------------------------------
//Set timeouts (code from ADI driver)
_regs.timeout = clamp(
static_cast(ceil(_pfd_freq / (20e3 * 30))), 1, 1023);
UHD_ASSERT_THROW((_regs.timeout & ((boost::uint16_t)~0x3FF)) == 0);
_regs.synth_lock_timeout =
static_cast(ceil((_pfd_freq * 2) / (100e3 * _regs.timeout)));
UHD_ASSERT_THROW((_regs.synth_lock_timeout & ((boost::uint16_t)~0x1F)) == 0);
_regs.auto_level_timeout =
static_cast(ceil((_pfd_freq * 5) / (100e3 * _regs.timeout)));
//-----------------------------------------------------------
//Set VCO band divider
_regs.vco_band_div =
static_cast(ceil(_pfd_freq / 2.4e6));
//-----------------------------------------------------------
//Set ADC delay (code from ADI driver)
_regs.adc_enable = adf5355_regs_t::ADC_ENABLE_ENABLED;
_regs.adc_conversion = adf5355_regs_t::ADC_CONVERSION_ENABLED;
_regs.adc_clock_divider = clamp(
static_cast(ceil(((_pfd_freq / 100e3) - 2) / 4)), 1, 255);
_wait_time_us = static_cast(
ceil(16e6 / (_pfd_freq / ((4 * _regs.adc_clock_divider) + 2))));
//-----------------------------------------------------------
//Phase resync
_regs.phase_resync = adf5355_regs_t::PHASE_RESYNC_DISABLED; // Disabled during development
_regs.phase_adjust = adf5355_regs_t::PHASE_ADJUST_DISABLED;
_regs.sd_load_reset = adf5355_regs_t::SD_LOAD_RESET_ON_REG0_UPDATE;
_regs.phase_resync_clk_div = static_cast(
floor(ADF5355_PHASE_RESYNC_TIME * _pfd_freq));
_rewrite_regs = true;
}
void set_output_power(output_power_t power)
{
adf5355_regs_t::output_power_t setting;
switch (power) {
case OUTPUT_POWER_M4DBM: setting = adf5355_regs_t::OUTPUT_POWER_M4DBM; break;
case OUTPUT_POWER_M1DBM: setting = adf5355_regs_t::OUTPUT_POWER_M1DBM; break;
case OUTPUT_POWER_2DBM: setting = adf5355_regs_t::OUTPUT_POWER_2DBM; break;
case OUTPUT_POWER_5DBM: setting = adf5355_regs_t::OUTPUT_POWER_5DBM; break;
default: UHD_THROW_INVALID_CODE_PATH();
}
if (_regs.output_power != setting) _rewrite_regs = true;
_regs.output_power = setting;
}
void set_output_enable(output_t output, bool enable) {
switch (output) {
case RF_OUTPUT_A: _regs.rf_out_a_enabled = enable ? adf5355_regs_t::RF_OUT_A_ENABLED_ENABLED :
adf5355_regs_t::RF_OUT_A_ENABLED_DISABLED;
break;
case RF_OUTPUT_B: _regs.rf_out_b_enabled = enable ? adf5355_regs_t::RF_OUT_B_ENABLED_ENABLED :
adf5355_regs_t::RF_OUT_B_ENABLED_DISABLED;
break;
}
}
void set_muxout_mode(muxout_t mode)
{
switch (mode) {
case MUXOUT_3STATE: _regs.muxout = adf5355_regs_t::MUXOUT_3STATE; break;
case MUXOUT_DVDD: _regs.muxout = adf5355_regs_t::MUXOUT_DVDD; break;
case MUXOUT_DGND: _regs.muxout = adf5355_regs_t::MUXOUT_DGND; break;
case MUXOUT_RDIV: _regs.muxout = adf5355_regs_t::MUXOUT_RDIV; break;
case MUXOUT_NDIV: _regs.muxout = adf5355_regs_t::MUXOUT_NDIV; break;
case MUXOUT_ALD: _regs.muxout = adf5355_regs_t::MUXOUT_ANALOG_LD; break;
case MUXOUT_DLD: _regs.muxout = adf5355_regs_t::MUXOUT_DLD; break;
default: UHD_THROW_INVALID_CODE_PATH();
}
}
double set_frequency(double target_freq, double freq_resolution, bool flush = false)
{
if (target_freq > ADF5355_MAX_OUT_FREQ or target_freq < ADF5355_MIN_OUT_FREQ) {
throw uhd::runtime_error("requested frequency out of range.");
}
if ((boost::uint32_t) freq_resolution == 0) {
throw uhd::runtime_error("requested resolution cannot be less than 1.");
}
/* Calculate target VCOout frequency */
//Increase RF divider until acceptable VCO frequency
double target_vco_freq = target_freq;
boost::uint32_t rf_divider = 1;
while (target_vco_freq < ADF5355_MIN_VCO_FREQ && rf_divider < 64) {
target_vco_freq *= 2;
rf_divider *= 2;
}
switch (rf_divider) {
case 1: _regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV1; break;
case 2: _regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV2; break;
case 4: _regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV4; break;
case 8: _regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV8; break;
case 16: _regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV16; break;
case 32: _regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV32; break;
case 64: _regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV64; break;
default: UHD_THROW_INVALID_CODE_PATH();
}
//Compute fractional PLL params
double prescaler_input_freq = target_vco_freq;
if (_fb_after_divider) {
prescaler_input_freq /= rf_divider;
}
double N = prescaler_input_freq / _pfd_freq;
boost::uint16_t INT = static_cast(floor(N));
boost::uint32_t FRAC1 = static_cast(floor((N - INT) * ADF5355_MOD1));
double residue = ADF5355_MOD1 * (N - (INT + FRAC1 / ADF5355_MOD1));
double gcd = boost::math::gcd(static_cast(_pfd_freq), static_cast(freq_resolution));
boost::uint16_t MOD2 = static_cast(floor(_pfd_freq / gcd));
if (MOD2 > ADF5355_MAX_MOD2) {
MOD2 = ADF5355_MAX_MOD2;
}
boost::uint16_t FRAC2 = ceil(residue * MOD2);
double coerced_vco_freq = _pfd_freq * (
todbl(INT) + (
(todbl(FRAC1) +
(todbl(FRAC2) / todbl(MOD2)))
/ todbl(ADF5355_MOD1)
)
);
double coerced_out_freq = coerced_vco_freq / rf_divider;
/* Update registers */
_regs.int_16_bit = INT;
_regs.frac1_24_bit = FRAC1;
_regs.frac2_14_bit = FRAC2;
_regs.mod2_14_bit = MOD2;
_regs.phase_24_bit = 0;
/*
if (_regs.int_16_bit >= ADF5355_MIN_INT_PRESCALER_89) {
_regs.prescaler = adf5355_regs_t::PRESCALER_8_9;
} else {
_regs.prescaler = adf5355_regs_t::PRESCALER_4_5;
}
/* ADI: Tests have shown that the optimal bleed set is the following:
* 4/N < IBLEED/ICP < 10/N */
/*
boost::uint32_t cp_curr_ua =
(static_cast(_regs.charge_pump_current) + 1) * 315;
_regs.cp_bleed_current = clamp(
ceil((todbl(400)*cp_curr_ua) / (_regs.int_16_bit*375)), 1, 255);
_regs.negative_bleed = adf5355_regs_t::NEGATIVE_BLEED_ENABLED;
_regs.gated_bleed = adf5355_regs_t::GATED_BLEED_DISABLED;
*/
if (flush) commit();
return coerced_out_freq;
}
void commit()
{
if (_rewrite_regs) {
//For a full state sync write registers in reverse order 12 - 0
addr_vtr_t regs;
for (int addr = 12; addr >= 0; addr--) {
regs.push_back(_regs.get_reg(boost::uint32_t(addr)));
}
_write_fn(regs);
_rewrite_regs = false;
} else {
//Frequency update sequence from data sheet
static const size_t ONE_REG = 1;
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(6)));
_regs.counter_reset = adf5355_regs_t::COUNTER_RESET_ENABLED;
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(4)));
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(2)));
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(1)));
_regs.autocal_en = adf5355_regs_t::AUTOCAL_EN_DISABLED;
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(0)));
_regs.counter_reset = adf5355_regs_t::COUNTER_RESET_DISABLED;
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(4)));
boost::this_thread::sleep(boost::posix_time::microsec(_wait_time_us));
_regs.autocal_en = adf5355_regs_t::AUTOCAL_EN_ENABLED;
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(0)));
}
}
private: //Members
typedef std::vector addr_vtr_t;
write_fn_t _write_fn;
adf5355_regs_t _regs;
bool _rewrite_regs;
boost::uint32_t _wait_time_us;
double _ref_freq;
double _pfd_freq;
double _fb_after_divider;
};
adf5355_iface::sptr adf5355_iface::make(write_fn_t write)
{
return sptr(new adf5355_impl(write));
}