// // Copyright 2015 Ettus Research // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include "ad936x_manager.hpp" #include #include #include using namespace uhd; using namespace uhd::usrp; /**************************************************************************** * Default values ***************************************************************************/ const double ad936x_manager::DEFAULT_GAIN = 0; const double ad936x_manager::DEFAULT_BANDWIDTH = 56e6; const double ad936x_manager::DEFAULT_TICK_RATE = 16e6; const double ad936x_manager::DEFAULT_FREQ = 100e6; // Hz const uint32_t ad936x_manager::DEFAULT_DECIM = 128; const uint32_t ad936x_manager::DEFAULT_INTERP = 128; const bool ad936x_manager::DEFAULT_AUTO_DC_OFFSET = true; const bool ad936x_manager::DEFAULT_AUTO_IQ_BALANCE = true; const bool ad936x_manager::DEFAULT_AGC_ENABLE = false; class ad936x_manager_impl : public ad936x_manager { public: /************************************************************************ * Structor ***********************************************************************/ ad936x_manager_impl( const ad9361_ctrl::sptr &codec_ctrl, const size_t n_frontends ) : _codec_ctrl(codec_ctrl), _n_frontends(n_frontends) { if (_n_frontends < 1 or _n_frontends > 2) { throw uhd::runtime_error(str( boost::format("AD936x device can only have either 1 or 2 frontends, not %d.") % _n_frontends )); } for (size_t i = 1; i <= _n_frontends; i++) { _rx_frontends.push_back(str(boost::format("RX%d") % i)); _tx_frontends.push_back(str(boost::format("TX%d") % i)); } } /************************************************************************ * API Calls ***********************************************************************/ void init_codec() { for(const std::string &rx_fe: _rx_frontends) { _codec_ctrl->set_gain(rx_fe, DEFAULT_GAIN); _codec_ctrl->set_bw_filter(rx_fe, DEFAULT_BANDWIDTH); _codec_ctrl->tune(rx_fe, DEFAULT_FREQ); _codec_ctrl->set_dc_offset_auto(rx_fe, DEFAULT_AUTO_DC_OFFSET); _codec_ctrl->set_iq_balance_auto(rx_fe, DEFAULT_AUTO_IQ_BALANCE); _codec_ctrl->set_agc(rx_fe, DEFAULT_AGC_ENABLE); } for(const std::string &tx_fe: _tx_frontends) { _codec_ctrl->set_gain(tx_fe, DEFAULT_GAIN); _codec_ctrl->set_bw_filter(tx_fe, DEFAULT_BANDWIDTH); _codec_ctrl->tune(tx_fe, DEFAULT_FREQ); } } // // loopback_self_test checks the integrity of the FPGA->AD936x->FPGA sample interface. // The AD936x is put in loopback mode that sends the TX data unchanged to the RX side. // A test value is written to the codec_idle register in the TX side of the radio. // The readback register is then used to capture the values on the TX and RX sides // simultaneously for comparison. It is a reasonably effective test for AC timing // since I/Q Ch0/Ch1 alternate over the same wires. Note, however, that it uses // whatever timing is configured at the time the test is called rather than select // worst case conditions to stress the interface. // void loopback_self_test( boost::function poker_functor, boost::function peeker_functor ) { // Put AD936x in loopback mode _codec_ctrl->data_port_loopback(true); UHD_LOGGER_INFO("AD936X") << "Performing CODEC loopback test... "; size_t hash = size_t(time(NULL)); // Allow some time for AD936x to enter loopback mode. // There is no clear statement in the documentation of how long it takes, // but UG-570 does say to "allow six ADC_CLK/64 clock cycles of flush time" // when leaving the TX or RX states. That works out to ~75us at the // minimum clock rate of 5 MHz, which lines up with test results. // Sleeping 1ms is far more than enough. boost::this_thread::sleep(boost::posix_time::milliseconds(1)); for (size_t i = 0; i < 100; i++) { // Create test word boost::hash_combine(hash, i); const uint32_t word32 = uint32_t(hash) & 0xfff0fff0; // Write test word to codec_idle idle register (on TX side) poker_functor(word32); // Read back values - TX is lower 32-bits and RX is upper 32-bits const uint64_t rb_word64 = peeker_functor(); const uint32_t rb_tx = uint32_t(rb_word64 >> 32); const uint32_t rb_rx = uint32_t(rb_word64 & 0xffffffff); // Compare TX and RX values to test word bool test_fail = word32 != rb_tx or word32 != rb_rx; if(test_fail) { UHD_LOGGER_INFO("AD936X") << "CODEC loopback test failed"; throw uhd::runtime_error("CODEC loopback test failed."); } } UHD_LOGGER_INFO("AD936X") << "CODEC loopback test passed"; // Zero out the idle data. poker_functor(0); // Take AD936x out of loopback mode _codec_ctrl->data_port_loopback(false); } double get_auto_tick_rate( const double lcm_rate, size_t num_chans ) { UHD_ASSERT_THROW(num_chans >= 1 and num_chans <= _n_frontends); const uhd::meta_range_t rate_range = _codec_ctrl->get_clock_rate_range(); const double min_tick_rate = rate_range.start(); const double max_tick_rate = rate_range.stop() / num_chans; // Check if the requested rate is within available limits: if (uhd::math::fp_compare::fp_compare_delta(lcm_rate, uhd::math::FREQ_COMPARISON_DELTA_HZ) > uhd::math::fp_compare::fp_compare_delta(max_tick_rate, uhd::math::FREQ_COMPARISON_DELTA_HZ)) { throw uhd::value_error(str( boost::format("[ad936x_manager] Cannot get determine a tick rate if sampling rate exceeds maximum tick rate (%f > %f)") % lcm_rate % max_tick_rate )); } // **** Choose the new rate **** // Rules for choosing the tick rate: // Choose a rate that is a power of 2 larger than the sampling rate, // but at least 4. Cannot exceed the max tick rate, of course, but must // be larger than the minimum tick rate. // An equation that does all that is: // // f_auto = r * 2^floor(log2(f_max/r)) // = lcm_rate * multiplier // // where r is the base rate and f_max is the maximum tick rate. The case // where floor() yields 1 must be caught. // We use shifts here instead of 2^x because exp2() is not available in all compilers, // also this guarantees no rounding issues. The type cast to int32_t serves as floor(): int32_t multiplier = (1 << int32_t(uhd::math::log2(max_tick_rate / lcm_rate))); if (multiplier == 2 and lcm_rate >= min_tick_rate) { // Don't bother (see above) multiplier = 1; } const double new_rate = lcm_rate * multiplier; UHD_ASSERT_THROW( uhd::math::fp_compare::fp_compare_delta(new_rate, uhd::math::FREQ_COMPARISON_DELTA_HZ) >= uhd::math::fp_compare::fp_compare_delta(min_tick_rate, uhd::math::FREQ_COMPARISON_DELTA_HZ) ); UHD_ASSERT_THROW( uhd::math::fp_compare::fp_compare_delta(new_rate, uhd::math::FREQ_COMPARISON_DELTA_HZ) <= uhd::math::fp_compare::fp_compare_delta(max_tick_rate, uhd::math::FREQ_COMPARISON_DELTA_HZ) ); return new_rate; } bool check_bandwidth(double rate, const std::string dir) { if (rate > _codec_ctrl->get_bw_filter_range(dir).stop()) { UHD_LOGGER_WARNING("AD936X") << "Selected " << dir << " bandwidth (" << (rate/1e6) << " MHz) exceeds\n" << "analog frontend filter bandwidth (" << (_codec_ctrl->get_bw_filter_range(dir).stop()/1e6) << " MHz)." ; return false; } return true; } void populate_frontend_subtree(uhd::property_tree::sptr subtree, const std::string &key, uhd::direction_t dir) { subtree->create("name").set("FE-"+key); // Sensors subtree->create("sensors/temp") .set_publisher(boost::bind(&ad9361_ctrl::get_temperature, _codec_ctrl)) ; if (dir == RX_DIRECTION) { subtree->create("sensors/rssi") .set_publisher(boost::bind(&ad9361_ctrl::get_rssi, _codec_ctrl, key)) ; } // Gains for(const std::string &name: ad9361_ctrl::get_gain_names(key)) { subtree->create(uhd::fs_path("gains") / name / "range") .set(ad9361_ctrl::get_gain_range(key)); subtree->create(uhd::fs_path("gains") / name / "value") .set(ad936x_manager::DEFAULT_GAIN) .set_coercer(boost::bind(&ad9361_ctrl::set_gain, _codec_ctrl, key, _1)) ; } // FE Settings subtree->create("connection").set("IQ"); subtree->create("enabled").set(true); subtree->create("use_lo_offset").set(false); // Analog Bandwidths subtree->create("bandwidth/value") .set(ad936x_manager::DEFAULT_BANDWIDTH) .set_coercer(boost::bind(&ad9361_ctrl::set_bw_filter, _codec_ctrl, key, _1)) ; subtree->create("bandwidth/range") .set_publisher(boost::bind(&ad9361_ctrl::get_bw_filter_range, key)) ; // LO Tuning subtree->create("freq/range") .set_publisher(boost::bind(&ad9361_ctrl::get_rf_freq_range)) ; subtree->create("freq/value") .set_publisher(boost::bind(&ad9361_ctrl::get_freq, _codec_ctrl, key)) .set_coercer(boost::bind(&ad9361_ctrl::tune, _codec_ctrl, key, _1)) ; // Frontend corrections if(dir == RX_DIRECTION) { subtree->create("dc_offset/enable" ) .set(ad936x_manager::DEFAULT_AUTO_DC_OFFSET) .add_coerced_subscriber(boost::bind(&ad9361_ctrl::set_dc_offset_auto, _codec_ctrl, key, _1)) ; subtree->create("iq_balance/enable" ) .set(ad936x_manager::DEFAULT_AUTO_IQ_BALANCE) .add_coerced_subscriber(boost::bind(&ad9361_ctrl::set_iq_balance_auto, _codec_ctrl, key, _1)) ; // AGC setup const std::list mode_strings = boost::assign::list_of("slow")("fast"); subtree->create("gain/agc/enable") .set(DEFAULT_AGC_ENABLE) .add_coerced_subscriber(boost::bind((&ad9361_ctrl::set_agc), _codec_ctrl, key, _1)) ; subtree->create("gain/agc/mode/value") .add_coerced_subscriber(boost::bind((&ad9361_ctrl::set_agc_mode), _codec_ctrl, key, _1)).set(mode_strings.front()) ; subtree->create< std::list >("gain/agc/mode/options") .set(mode_strings) ; } // Frontend filters for(const std::string &filter_name: _codec_ctrl->get_filter_names(key)) { subtree->create(uhd::fs_path("filters") / filter_name / "value" ) .set_publisher(boost::bind(&ad9361_ctrl::get_filter, _codec_ctrl, key, filter_name)) .add_coerced_subscriber(boost::bind(&ad9361_ctrl::set_filter, _codec_ctrl, key, filter_name, _1)); } } private: //! Store a pointer to an actual AD936x control object ad9361_ctrl::sptr _codec_ctrl; //! Do we have 1 or 2 frontends? const size_t _n_frontends; //! List of valid RX frontend names (RX1, RX2) std::vector _rx_frontends; //! List of valid TX frontend names (TX1, TX2) std::vector _tx_frontends; }; /* class ad936x_manager_impl */ ad936x_manager::sptr ad936x_manager::make( const ad9361_ctrl::sptr &codec_ctrl, const size_t n_frontends ) { return sptr( new ad936x_manager_impl(codec_ctrl, n_frontends) ); }