// // Copyright 2014 Ettus Research LLC // #include #include #ifdef __cplusplus #include static int lround(double dbl) { return static_cast(dbl+0.5); } using namespace std; #else #include #include #endif #include #include #include "ad9361_filter_taps.h" #include "ad9361_gain_tables.h" #include "ad9361_synth_lut.h" #include "ad9361_dispatch.h" #include "ad9361_platform.h" //Platform specific operations #include "ad9361_client.h" //Client (product) specific settings #include "ad9361_device.h" #define AD9361_MIN(a, b) (((a) < (b)) ? (a) : (b)) #define AD9361_MAX(a, b) (((a) > (b)) ? (a) : (b)) //////////////////////////////////////////////////////////// static void fake_msg(const char* str, ...) { (void) str; } static msgfn _msgfn = fake_msg; //extern void msg(const char* str, ...); External object must provide this symbol #define msg (_msgfn) void ad9361_set_msgfn(msgfn pfn) { _msgfn = pfn; } //////////////////////////////////////////////////////////// #define AD9361_MAX_GAIN 89.75 #define DOUBLE_PI 3.14159265359 #define DOUBLE_LN_2 0.693147181 #define RX_TYPE 0 #define TX_TYPE 1 //////////////////////////////////////////////////////////// // the following macros evaluate to a compile time constant // macros By Tom Torfs - donated to the public domain /* turn a numeric literal into a hex constant (avoids problems with leading zeroes) 8-bit constants max value 0x11111111, always fits in unsigned long */ #define HEX__(n) 0x##n##LU /* 8-bit conversion function */ #define B8__(x) ((x&0x0000000FLU)?1:0) \ +((x&0x000000F0LU)?2:0) \ +((x&0x00000F00LU)?4:0) \ +((x&0x0000F000LU)?8:0) \ +((x&0x000F0000LU)?16:0) \ +((x&0x00F00000LU)?32:0) \ +((x&0x0F000000LU)?64:0) \ +((x&0xF0000000LU)?128:0) /* *** user macros *** */ /* for upto 8-bit binary constants */ #define B8(d) ((unsigned char)B8__(HEX__(d))) double set_gain(uint64_t handle, int which, int n, const double value); void set_active_chains(uint64_t handle, bool tx1, bool tx2, bool rx1, bool rx2); /*********************************************************************** * Placeholders, unused, or test functions **********************************************************************/ static char *tmp_req_buffer; void post_err_msg( const char* error) { msg("[AD9361 error] %s", error); if (!tmp_req_buffer) return; ad9361_transaction_t *request = (ad9361_transaction_t *)tmp_req_buffer; strncpy(request->error_msg, error, (AD9361_TRANSACTION_MAX_ERROR_MSG + 1)); // '+ 1' as length excludes terminating NUL request->error_msg[AD9361_TRANSACTION_MAX_ERROR_MSG] = '\0'; // If string was too long, NUL will not be copied, so force one just in case } /* Make AD9361 output its test tone. */ void output_test_tone(ad9361_device_t* device) { /* Output a 480 kHz tone at 800 MHz */ write_ad9361_reg(device, 0x3F4, 0x0B); write_ad9361_reg(device, 0x3FC, 0xFF); write_ad9361_reg(device, 0x3FD, 0xFF); write_ad9361_reg(device, 0x3FE, 0x3F); } /* Turn on/off AD9361's TX port --> RX port loopback. */ void data_port_loopback(uint64_t handle, const int on) { ad9361_device_t* device = get_ad9361_device(handle); msg("[data_port_loopback] Enabled: %d", on); write_ad9361_reg(device, 0x3F5, (on ? 0x01 : 0x00)); } /* This is a simple comparison for very large double-precision floating * point numbers. It is used to prevent re-tunes for frequencies that are * the same but not 'exactly' because of data precision issues. */ // TODO: see if we can avoid the need for this function int freq_is_nearly_equal(double a, double b) { return AD9361_MAX(a,b) - AD9361_MIN(a,b) < 1; } /*********************************************************************** * Filter functions **********************************************************************/ /* This function takes in the calculated maximum number of FIR taps, and * returns a number of taps that makes AD9361 happy. */ int get_num_taps(int max_num_taps) { int num_taps = 0; int num_taps_list[] = {16, 32, 48, 64, 80, 96, 112, 128}; int i; for(i = 1; i < 8; i++) { if(max_num_taps >= num_taps_list[i]) { continue; } else { num_taps = num_taps_list[i - 1]; break; } } if(num_taps == 0) { num_taps = 128; } return num_taps; } /* Program either the RX or TX FIR filter. * * The process is the same for both filters, but the function must be told * how many taps are in the filter, and given a vector of the taps * themselves. */ void program_fir_filter(ad9361_device_t* device, int which, int num_taps, uint16_t *coeffs) { uint16_t base; /* RX and TX filters use largely identical sets of programming registers. Select the appropriate bank of registers here. */ if(which == RX_TYPE) { base = 0x0f0; } else { base = 0x060; } /* Encode number of filter taps for programming register */ uint8_t reg_numtaps = (((num_taps / 16) - 1) & 0x07) << 5; /* Turn on the filter clock. */ write_ad9361_reg(device, base+5, reg_numtaps | 0x1a); ad9361_msleep(1); /* Zero the unused taps just in case they have stale data */ int addr; for(addr=num_taps; addr < 128; addr++) { write_ad9361_reg(device, base+0, addr); write_ad9361_reg(device, base+1, 0x0); write_ad9361_reg(device, base+2, 0x0); write_ad9361_reg(device, base+5, reg_numtaps | 0x1e); write_ad9361_reg(device, base+4, 0x00); write_ad9361_reg(device, base+4, 0x00); } /* Iterate through indirect programming of filter coeffs using ADI recomended procedure */ for(addr=0; addr < num_taps; addr++) { write_ad9361_reg(device, base+0, addr); write_ad9361_reg(device, base+1, (coeffs[addr]) & 0xff); write_ad9361_reg(device, base+2, (coeffs[addr] >> 8) & 0xff); write_ad9361_reg(device, base+5, reg_numtaps | 0x1e); write_ad9361_reg(device, base+4, 0x00); write_ad9361_reg(device, base+4, 0x00); } /* UG-671 states (page 25) (paraphrased and clarified): " After the table has been programmed, write to register BASE+5 with the write bit D2 cleared and D1 high. Then, write to register BASE+5 again with D1 clear, thus ensuring that the write bit resets internally before the clock stops. Wait 4 sample clock periods after setting D2 high while that data writes into the table" */ write_ad9361_reg(device, base+5, reg_numtaps | 0x1A); if(which == RX_TYPE) { write_ad9361_reg(device, base+5, reg_numtaps | 0x18); write_ad9361_reg(device, base+6, 0x02); /* Also turn on -6dB Rx gain here, to stop filter overfow.*/ } else { write_ad9361_reg(device, base+5, reg_numtaps | 0x19); /* Also turn on -6dB Tx gain here, to stop filter overfow.*/ } } /* Program the RX FIR Filter. */ void setup_rx_fir(ad9361_device_t* device, int total_num_taps) { int num_taps = total_num_taps; #ifdef __cplusplus uint16_t* coeffs = new uint16_t[num_taps]; #else uint16_t coeffs[num_taps]; #endif int i; for(i = 0; i < num_taps; i++) { switch(num_taps) { case 128: coeffs[i] = (uint16_t)hb127_coeffs[i]; break; case 96: coeffs[i] = (uint16_t)hb95_coeffs[i]; break; case 64: coeffs[i] = (uint16_t)hb63_coeffs[i]; break; case 48: coeffs[i] = (uint16_t)hb47_coeffs[i]; break; default: post_err_msg("Unsupported number of Rx FIR taps."); } } program_fir_filter(device, RX_TYPE, total_num_taps, coeffs); #ifdef __cplusplus delete[] coeffs; #endif } /* Program the TX FIR Filter. */ void setup_tx_fir(ad9361_device_t* device, int total_num_taps) { int num_taps = total_num_taps; #ifdef __cplusplus uint16_t* coeffs = new uint16_t[num_taps]; #else uint16_t coeffs[num_taps]; #endif int i; for(i = 0; i < num_taps; i++) { switch(num_taps) { case 128: coeffs[i] = (uint16_t)hb127_coeffs[i]; break; case 96: coeffs[i] = (uint16_t)hb95_coeffs[i]; break; case 64: coeffs[i] = (uint16_t)hb63_coeffs[i]; break; case 48: coeffs[i] = (uint16_t)hb47_coeffs[i]; break; default: post_err_msg("Unsupported number of Tx FIR taps."); } } program_fir_filter(device, TX_TYPE, total_num_taps, coeffs); #ifdef __cplusplus delete[] coeffs; #endif } /*********************************************************************** * Calibration functions ***********************************************************************/ /* Calibrate and lock the BBPLL. * * This function should be called anytime the BBPLL is tuned. */ void calibrate_lock_bbpll(ad9361_device_t* device) { write_ad9361_reg(device, 0x03F, 0x05); // Start the BBPLL calibration write_ad9361_reg(device, 0x03F, 0x01); // Clear the 'start' bit /* Increase BBPLL KV and phase margin. */ write_ad9361_reg(device, 0x04c, 0x86); write_ad9361_reg(device, 0x04d, 0x01); write_ad9361_reg(device, 0x04d, 0x05); /* Wait for BBPLL lock. */ int count = 0; while(!(read_ad9361_reg(device, 0x05e) & 0x80)) { if(count > 1000) { post_err_msg("BBPLL not locked"); break; } count++; ad9361_msleep(2); } } /* Calibrate the synthesizer charge pumps. * * Technically, this calibration only needs to be done once, at device * initialization. */ void calibrate_synth_charge_pumps(ad9361_device_t* device) { /* If this function ever gets called, and the ENSM isn't already in the * ALERT state, then something has gone horribly wrong. */ if((read_ad9361_reg(device, 0x017) & 0x0F) != 5) { post_err_msg("AD9361 not in ALERT during cal"); } /* Calibrate the RX synthesizer charge pump. */ int count = 0; write_ad9361_reg(device, 0x23d, 0x04); while(!(read_ad9361_reg(device, 0x244) & 0x80)) { if(count > 5) { post_err_msg("RX charge pump cal failure"); break; } count++; ad9361_msleep(1); } write_ad9361_reg(device, 0x23d, 0x00); /* Calibrate the TX synthesizer charge pump. */ count = 0; write_ad9361_reg(device, 0x27d, 0x04); while(!(read_ad9361_reg(device, 0x284) & 0x80)) { if(count > 5) { post_err_msg("TX charge pump cal failure"); break; } count++; ad9361_msleep(1); } write_ad9361_reg(device, 0x27d, 0x00); } /* Calibrate the analog BB RX filter. * * Note that the filter calibration depends heavily on the baseband * bandwidth, so this must be re-done after any change to the RX sample * rate. */ double calibrate_baseband_rx_analog_filter(ad9361_device_t* device) { /* For filter tuning, baseband BW is half the complex BW, and must be * between 28e6 and 0.2e6. */ double bbbw = device->baseband_bw / 2.0; if(bbbw > 28e6) { bbbw = 28e6; } else if (bbbw < 0.20e6) { bbbw = 0.20e6; } double rxtune_clk = ((1.4 * bbbw * 2 * DOUBLE_PI) / DOUBLE_LN_2); device->rx_bbf_tunediv = AD9361_MIN(511, ad9361_ceil_to_int(device->bbpll_freq / rxtune_clk)); device->regs.bbftune_config = (device->regs.bbftune_config & 0xFE) \ | ((device->rx_bbf_tunediv >> 8) & 0x0001); double bbbw_mhz = bbbw / 1e6; double temp = ((bbbw_mhz - ad9361_floor_to_int(bbbw_mhz)) * 1000) / 7.8125; uint8_t bbbw_khz = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int(temp + 0.5))); /* Set corner frequencies and dividers. */ write_ad9361_reg(device, 0x1fb, (uint8_t)(bbbw_mhz)); write_ad9361_reg(device, 0x1fc, bbbw_khz); write_ad9361_reg(device, 0x1f8, (device->rx_bbf_tunediv & 0x00FF)); write_ad9361_reg(device, 0x1f9, device->regs.bbftune_config); /* RX Mix Voltage settings - only change with apps engineer help. */ write_ad9361_reg(device, 0x1d5, 0x3f); write_ad9361_reg(device, 0x1c0, 0x03); /* Enable RX1 & RX2 filter tuners. */ write_ad9361_reg(device, 0x1e2, 0x02); write_ad9361_reg(device, 0x1e3, 0x02); /* Run the calibration! */ int count = 0; write_ad9361_reg(device, 0x016, 0x80); while(read_ad9361_reg(device, 0x016) & 0x80) { if(count > 100) { post_err_msg("RX baseband filter cal FAILURE"); break; } count++; ad9361_msleep(1); } /* Disable RX1 & RX2 filter tuners. */ write_ad9361_reg(device, 0x1e2, 0x03); write_ad9361_reg(device, 0x1e3, 0x03); return bbbw; } /* Calibrate the analog BB TX filter. * * Note that the filter calibration depends heavily on the baseband * bandwidth, so this must be re-done after any change to the TX sample * rate. */ double calibrate_baseband_tx_analog_filter(ad9361_device_t* device) { /* For filter tuning, baseband BW is half the complex BW, and must be * between 28e6 and 0.2e6. */ double bbbw = device->baseband_bw / 2.0; if(bbbw > 20e6) { bbbw = 20e6; } else if (bbbw < 0.625e6) { bbbw = 0.625e6; } double txtune_clk = ((1.6 * bbbw * 2 * DOUBLE_PI) / DOUBLE_LN_2); uint16_t txbbfdiv = AD9361_MIN(511, (ad9361_ceil_to_int(device->bbpll_freq / txtune_clk))); device->regs.bbftune_mode = (device->regs.bbftune_mode & 0xFE) \ | ((txbbfdiv >> 8) & 0x0001); /* Program the divider values. */ write_ad9361_reg(device, 0x0d6, (txbbfdiv & 0x00FF)); write_ad9361_reg(device, 0x0d7, device->regs.bbftune_mode); /* Enable the filter tuner. */ write_ad9361_reg(device, 0x0ca, 0x22); /* Calibrate! */ int count = 0; write_ad9361_reg(device, 0x016, 0x40); while(read_ad9361_reg(device, 0x016) & 0x40) { if(count > 100) { post_err_msg("TX baseband filter cal FAILURE"); break; } count++; ad9361_msleep(1); } /* Disable the filter tuner. */ write_ad9361_reg(device, 0x0ca, 0x26); return bbbw; } /* Calibrate the secondary TX filter. * * This filter also depends on the TX sample rate, so if a rate change is * made, the previous calibration will no longer be valid. */ void calibrate_secondary_tx_filter(ad9361_device_t* device) { /* For filter tuning, baseband BW is half the complex BW, and must be * between 20e6 and 0.53e6. */ double bbbw = device->baseband_bw / 2.0; if(bbbw > 20e6) { bbbw = 20e6; } else if (bbbw < 0.53e6) { bbbw = 0.53e6; } double bbbw_mhz = bbbw / 1e6; /* Start with a resistor value of 100 Ohms. */ int res = 100; /* Calculate target corner frequency. */ double corner_freq = 5 * bbbw_mhz * 2 * DOUBLE_PI; /* Iterate through RC values to determine correct combination. */ int cap = 0; int i; for(i = 0; i <= 3; i++) { cap = (ad9361_floor_to_int(0.5 + (( 1 / ((corner_freq * res) * 1e6)) * 1e12))) - 12; if(cap <= 63) { break; } res = res * 2; } if(cap > 63) { cap = 63; } uint8_t reg0d0, reg0d1, reg0d2; /* Translate baseband bandwidths to register settings. */ if((bbbw_mhz * 2) <= 9) { reg0d0 = 0x59; } else if(((bbbw_mhz * 2) > 9) && ((bbbw_mhz * 2) <= 24)) { reg0d0 = 0x56; } else if((bbbw_mhz * 2) > 24) { reg0d0 = 0x57; } else { post_err_msg("Cal2ndTxFil: INVALID_CODE_PATH bad bbbw_mhz"); reg0d0 = 0x00; } /* Translate resistor values to register settings. */ if(res == 100) { reg0d1 = 0x0c; } else if(res == 200) { reg0d1 = 0x04; } else if(res == 400) { reg0d1 = 0x03; } else if(res == 800) { reg0d1 = 0x01; } else { reg0d1 = 0x0c; } reg0d2 = cap; /* Program the above-calculated values. Sweet. */ write_ad9361_reg(device, 0x0d2, reg0d2); write_ad9361_reg(device, 0x0d1, reg0d1); write_ad9361_reg(device, 0x0d0, reg0d0); } /* Calibrate the RX TIAs. * * Note that the values in the TIA register, after calibration, vary with * the RX gain settings. */ void calibrate_rx_TIAs(ad9361_device_t* device) { uint8_t reg1eb = read_ad9361_reg(device, 0x1eb) & 0x3F; uint8_t reg1ec = read_ad9361_reg(device, 0x1ec) & 0x7F; uint8_t reg1e6 = read_ad9361_reg(device, 0x1e6) & 0x07; uint8_t reg1db = 0x00; uint8_t reg1dc = 0x00; uint8_t reg1dd = 0x00; uint8_t reg1de = 0x00; uint8_t reg1df = 0x00; /* For calibration, baseband BW is half the complex BW, and must be * between 28e6 and 0.2e6. */ double bbbw = device->baseband_bw / 2.0; if(bbbw > 20e6) { bbbw = 20e6; } else if (bbbw < 0.20e6) { bbbw = 0.20e6; } double ceil_bbbw_mhz = ad9361_ceil_to_int(bbbw / 1e6); /* Do some crazy resistor and capacitor math. */ int Cbbf = (reg1eb * 160) + (reg1ec * 10) + 140; int R2346 = 18300 * (reg1e6 & 0x07); double CTIA_fF = (Cbbf * R2346 * 0.56) / 3500; /* Translate baseband BW to register settings. */ if(ceil_bbbw_mhz <= 3) { reg1db = 0xe0; } else if((ceil_bbbw_mhz > 3) && (ceil_bbbw_mhz <= 10)) { reg1db = 0x60; } else if(ceil_bbbw_mhz > 10) { reg1db = 0x20; } else { post_err_msg("CalRxTias: INVALID_CODE_PATH bad bbbw_mhz"); } if(CTIA_fF > 2920) { reg1dc = 0x40; reg1de = 0x40; uint8_t temp = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int(0.5 + ((CTIA_fF - 400.0) / 320.0)))); reg1dd = temp; reg1df = temp; } else { uint8_t temp = (uint8_t) ad9361_floor_to_int(0.5 + ((CTIA_fF - 400.0) / 40.0)) + 0x40; reg1dc = temp; reg1de = temp; reg1dd = 0; reg1df = 0; } /* w00t. Settings calculated. Program them and roll out. */ write_ad9361_reg(device, 0x1db, reg1db); write_ad9361_reg(device, 0x1dd, reg1dd); write_ad9361_reg(device, 0x1df, reg1df); write_ad9361_reg(device, 0x1dc, reg1dc); write_ad9361_reg(device, 0x1de, reg1de); } /* Setup the AD9361 ADC. * * There are 40 registers that control the ADC's operation, most of the * values of which must be derived mathematically, dependent on the current * setting of the BBPLL. Note that the order of calculation is critical, as * some of the 40 registers depend on the values in others. */ void setup_adc(ad9361_device_t* device) { double bbbw_mhz = (((device->bbpll_freq / 1e6) / device->rx_bbf_tunediv) * DOUBLE_LN_2) \ / (1.4 * 2 * DOUBLE_PI); /* For calibration, baseband BW is half the complex BW, and must be * between 28e6 and 0.2e6. */ if(bbbw_mhz > 28) { bbbw_mhz = 28; } else if (bbbw_mhz < 0.20) { bbbw_mhz = 0.20; } uint8_t rxbbf_c3_msb = read_ad9361_reg(device, 0x1eb) & 0x3F; uint8_t rxbbf_c3_lsb = read_ad9361_reg(device, 0x1ec) & 0x7F; uint8_t rxbbf_r2346 = read_ad9361_reg(device, 0x1e6) & 0x07; double fsadc = device->adcclock_freq / 1e6; /* Sort out the RC time constant for our baseband bandwidth... */ double rc_timeconst = 0.0; if(bbbw_mhz < 18) { rc_timeconst = (1 / ((1.4 * 2 * DOUBLE_PI) \ * (18300 * rxbbf_r2346) * ((160e-15 * rxbbf_c3_msb) + (10e-15 * rxbbf_c3_lsb) + 140e-15) * (bbbw_mhz * 1e6))); } else { rc_timeconst = (1 / ((1.4 * 2 * DOUBLE_PI) \ * (18300 * rxbbf_r2346) * ((160e-15 * rxbbf_c3_msb) + (10e-15 * rxbbf_c3_lsb) + 140e-15) * (bbbw_mhz * 1e6) * (1 + (0.01 * (bbbw_mhz - 18))))); } double scale_res = ad9361_sqrt(1 / rc_timeconst); double scale_cap = ad9361_sqrt(1 / rc_timeconst); double scale_snr = (device->adcclock_freq < 80e6) ? 1.0 : 1.584893192; double maxsnr = 640 / 160; /* Calculate the values for all 40 settings registers. * * DO NOT TOUCH THIS UNLESS YOU KNOW EXACTLY WHAT YOU ARE DOING. kthx.*/ uint8_t data[40]; data[0] = 0; data[1] = 0; data[2] = 0; data[3] = 0x24; data[4] = 0x24; data[5] = 0; data[6] = 0; data[7] = (uint8_t) AD9361_MIN(124, (ad9361_floor_to_int(-0.5 + (80.0 * scale_snr * scale_res * AD9361_MIN(1.0, ad9361_sqrt(maxsnr * fsadc / 640.0)))))); double data007 = data[7]; data[8] = (uint8_t) AD9361_MIN(255, (ad9361_floor_to_int(0.5 + ((20.0 * (640.0 / fsadc) * ((data007 / 80.0)) / (scale_res * scale_cap)))))); data[10] = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int(-0.5 + (77.0 * scale_res * AD9361_MIN(1.0, ad9361_sqrt(maxsnr * fsadc / 640.0)))))); double data010 = data[10]; data[9] = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int(0.8 * data010))); data[11] = (uint8_t) AD9361_MIN(255, (ad9361_floor_to_int(0.5 + (20.0 * (640.0 / fsadc) * ((data010 / 77.0) / (scale_res * scale_cap)))))); data[12] = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int(-0.5 + (80.0 * scale_res * AD9361_MIN(1.0, ad9361_sqrt(maxsnr * fsadc / 640.0)))))); double data012 = data[12]; data[13] = (uint8_t) AD9361_MIN(255, (ad9361_floor_to_int(-1.5 + (20.0 * (640.0 / fsadc) * ((data012 / 80.0) / (scale_res * scale_cap)))))); data[14] = 21 * (uint8_t)(ad9361_floor_to_int(0.1 * 640.0 / fsadc)); data[15] = (uint8_t) AD9361_MIN(127, (1.025 * data007)); double data015 = data[15]; data[16] = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int((data015 * (0.98 + (0.02 * AD9361_MAX(1.0, (640.0 / fsadc) / maxsnr))))))); data[17] = data[15]; data[18] = (uint8_t) AD9361_MIN(127, (0.975 * (data010))); double data018 = data[18]; data[19] = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int((data018 * (0.98 + (0.02 * AD9361_MAX(1.0, (640.0 / fsadc) / maxsnr))))))); data[20] = data[18]; data[21] = (uint8_t) AD9361_MIN(127, (0.975 * data012)); double data021 = data[21]; data[22] = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int((data021 * (0.98 + (0.02 * AD9361_MAX(1.0, (640.0 / fsadc) / maxsnr))))))); data[23] = data[21]; data[24] = 0x2e; data[25] = (uint8_t)(ad9361_floor_to_int(128.0 + AD9361_MIN(63.0, 63.0 * (fsadc / 640.0)))); data[26] = (uint8_t)(ad9361_floor_to_int(AD9361_MIN(63.0, 63.0 * (fsadc / 640.0) * (0.92 + (0.08 * (640.0 / fsadc)))))); data[27] = (uint8_t)(ad9361_floor_to_int(AD9361_MIN(63.0, 32.0 * ad9361_sqrt(fsadc / 640.0)))); data[28] = (uint8_t)(ad9361_floor_to_int(128.0 + AD9361_MIN(63.0, 63.0 * (fsadc / 640.0)))); data[29] = (uint8_t)(ad9361_floor_to_int(AD9361_MIN(63.0, 63.0 * (fsadc / 640.0) * (0.92 + (0.08 * (640.0 / fsadc)))))); data[30] = (uint8_t)(ad9361_floor_to_int(AD9361_MIN(63.0, 32.0 * ad9361_sqrt(fsadc / 640.0)))); data[31] = (uint8_t)(ad9361_floor_to_int(128.0 + AD9361_MIN(63.0, 63.0 * (fsadc / 640.0)))); data[32] = (uint8_t)(ad9361_floor_to_int(AD9361_MIN(63.0, 63.0 * (fsadc / 640.0) * (0.92 + (0.08 * (640.0 / fsadc)))))); data[33] = (uint8_t)(ad9361_floor_to_int(AD9361_MIN(63.0, 63.0 * ad9361_sqrt(fsadc / 640.0)))); data[34] = (uint8_t) AD9361_MIN(127, (ad9361_floor_to_int(64.0 * ad9361_sqrt(fsadc / 640.0)))); data[35] = 0x40; data[36] = 0x40; data[37] = 0x2c; data[38] = 0x00; data[39] = 0x00; /* Program the registers! */ int i; for(i=0; i<40; i++) { write_ad9361_reg(device, 0x200+i, data[i]); } } /* Calibrate the baseband DC offset. * * Note that this function is called from within the TX quadrature * calibration function! */ void calibrate_baseband_dc_offset(ad9361_device_t* device) { write_ad9361_reg(device, 0x193, 0x3f); // Calibration settings write_ad9361_reg(device, 0x190, 0x0f); // Set tracking coefficient //write_ad9361_reg(device, 0x190, /*0x0f*//*0xDF*/0x80*1 | 0x40*1 | (16+8/*+4*/)); // Set tracking coefficient: don't *4 counter, do decim /4, increased gain shift write_ad9361_reg(device, 0x194, 0x01); // More calibration settings /* Start that calibration, baby. */ int count = 0; write_ad9361_reg(device, 0x016, 0x01); while(read_ad9361_reg(device, 0x016) & 0x01) { if(count > 100) { post_err_msg("Baseband DC Offset Calibration Failure"); break; } count++; ad9361_msleep(5); } } /* Calibrate the RF DC offset. * * Note that this function is called from within the TX quadrature * calibration function. */ void calibrate_rf_dc_offset(ad9361_device_t* device) { /* Some settings are frequency-dependent. */ if(device->rx_freq < 4e9) { write_ad9361_reg(device, 0x186, 0x32); // RF DC Offset count write_ad9361_reg(device, 0x187, 0x24); write_ad9361_reg(device, 0x188, 0x05); } else { write_ad9361_reg(device, 0x186, 0x28); // RF DC Offset count write_ad9361_reg(device, 0x187, 0x34); write_ad9361_reg(device, 0x188, 0x06); } write_ad9361_reg(device, 0x185, 0x20); // RF DC Offset wait count write_ad9361_reg(device, 0x18b, 0x83); write_ad9361_reg(device, 0x189, 0x30); /* Run the calibration! */ int count = 0; write_ad9361_reg(device, 0x016, 0x02); while(read_ad9361_reg(device, 0x016) & 0x02) { if(count > 100) { post_err_msg("RF DC Offset Calibration Failure"); break; } count++; ad9361_msleep(50); } } /* Start the RX quadrature calibration. * * Note that we are using AD9361's 'tracking' feature for RX quadrature * calibration, so once it starts it continues to free-run during operation. * It should be re-run for large frequency changes. */ void calibrate_rx_quadrature(ad9361_device_t* device) { /* Configure RX Quadrature calibration settings. */ write_ad9361_reg(device, 0x168, 0x03); // Set tone level for cal write_ad9361_reg(device, 0x16e, 0x25); // RX Gain index to use for cal write_ad9361_reg(device, 0x16a, 0x75); // Set Kexp phase write_ad9361_reg(device, 0x16b, 0x15); // Set Kexp amplitude write_ad9361_reg(device, 0x169, 0xcf); // Continuous tracking mode write_ad9361_reg(device, 0x18b, 0xad); } /* TX quadtrature calibration routine. * * The TX quadrature needs to be done twice, once for each TX chain, with * only one register change in between. Thus, this function enacts the * calibrations, and it is called from calibrate_tx_quadrature. */ void tx_quadrature_cal_routine(ad9361_device_t* device) { /* This is a weird process, but here is how it works: * 1) Read the calibrated NCO frequency bits out of 0A3. * 2) Write the two bits to the RX NCO freq part of 0A0. * 3) Re-read 0A3 to get bits [5:0] because maybe they changed? * 4) Update only the TX NCO freq bits in 0A3. * 5) Profit (I hope). */ uint8_t reg0a3 = read_ad9361_reg(device, 0x0a3); uint8_t nco_freq = (reg0a3 & 0xC0); write_ad9361_reg(device, 0x0a0, 0x15 | (nco_freq >> 1)); reg0a3 = read_ad9361_reg(device, 0x0a3); write_ad9361_reg(device, 0x0a3, (reg0a3 & 0x3F) | nco_freq); /* It is possible to reach a configuration that won't operate correctly, * where the two test tones used for quadrature calibration are outside * of the RX BBF, and therefore don't make it to the ADC. We will check * for that scenario here. */ double max_cal_freq = (((device->baseband_bw * device->tfir_factor) * ((nco_freq >> 6) + 1)) / 32) * 2; double bbbw = device->baseband_bw / 2.0; // bbbw represents the one-sided BW if(bbbw > 28e6) { bbbw = 28e6; } else if (bbbw < 0.20e6) { bbbw = 0.20e6; } if (max_cal_freq > bbbw ) post_err_msg("max_cal_freq > bbbw"); write_ad9361_reg(device, 0x0a1, 0x7B); // Set tracking coefficient write_ad9361_reg(device, 0x0a9, 0xff); // Cal count write_ad9361_reg(device, 0x0a2, 0x7f); // Cal Kexp write_ad9361_reg(device, 0x0a5, 0x01); // Cal magnitude threshold VVVV write_ad9361_reg(device, 0x0a6, 0x01); /* The gain table index used for calibration must be adjusted for the * mid-table to get a TIA index = 1 and LPF index = 0. */ if((device->rx_freq >= 1300e6) && (device->rx_freq < 4000e6)) { write_ad9361_reg(device, 0x0aa, 0x22); // Cal gain table index } else { write_ad9361_reg(device, 0x0aa, 0x25); // Cal gain table index } write_ad9361_reg(device, 0x0a4, 0xf0); // Cal setting conut write_ad9361_reg(device, 0x0ae, 0x00); // Cal LPF gain index (split mode) /* First, calibrate the baseband DC offset. */ calibrate_baseband_dc_offset(device); /* Second, calibrate the RF DC offset. */ calibrate_rf_dc_offset(device); /* Now, calibrate the TX quadrature! */ int count = 0; write_ad9361_reg(device, 0x016, 0x10); while(read_ad9361_reg(device, 0x016) & 0x10) { if(count > 100) { post_err_msg("TX Quadrature Calibration Failure"); break; } count++; ad9361_msleep(10); } } /* Run the TX quadrature calibration. * * Note that from within this function we are also triggering the baseband * and RF DC calibrations. */ void calibrate_tx_quadrature(ad9361_device_t* device) { /* Make sure we are, in fact, in the ALERT state. If not, something is * terribly wrong in the driver execution flow. */ if((read_ad9361_reg(device, 0x017) & 0x0F) != 5) { post_err_msg("TX Quad Cal started, but not in ALERT"); } /* Turn off free-running and continuous calibrations. Note that this * will get turned back on at the end of the RX calibration routine. */ write_ad9361_reg(device, 0x169, 0xc0); /* This calibration must be done in a certain order, and for both TX_A * and TX_B, separately. Store the original setting so that we can * restore it later. */ uint8_t orig_reg_inputsel = device->regs.inputsel; /*********************************************************************** * TX1/2-A Calibration **********************************************************************/ device->regs.inputsel = device->regs.inputsel & 0xBF; write_ad9361_reg(device, 0x004, device->regs.inputsel); tx_quadrature_cal_routine(device); /*********************************************************************** * TX1/2-B Calibration **********************************************************************/ device->regs.inputsel = device->regs.inputsel | 0x40; write_ad9361_reg(device, 0x004, device->regs.inputsel); tx_quadrature_cal_routine(device); /*********************************************************************** * fin **********************************************************************/ device->regs.inputsel = orig_reg_inputsel; write_ad9361_reg(device, 0x004, orig_reg_inputsel); } /*********************************************************************** * Other Misc Setup Functions ***********************************************************************/ /* Program the mixer gain table. * * Note that this table is fixed for all frequency settings. */ void program_mixer_gm_subtable(ad9361_device_t* device) { uint8_t gain[] = {0x78, 0x74, 0x70, 0x6C, 0x68, 0x64, 0x60, 0x5C, 0x58, 0x54, 0x50, 0x4C, 0x48, 0x30, 0x18, 0x00}; uint8_t gm[] = {0x00, 0x0D, 0x15, 0x1B, 0x21, 0x25, 0x29, 0x2C, 0x2F, 0x31, 0x33, 0x34, 0x35, 0x3A, 0x3D, 0x3E}; /* Start the clock. */ write_ad9361_reg(device, 0x13f, 0x02); /* Program the GM Sub-table. */ int i; for(i = 15; i >= 0; i--) { write_ad9361_reg(device, 0x138, i); write_ad9361_reg(device, 0x139, gain[(15 - i)]); write_ad9361_reg(device, 0x13A, 0x00); write_ad9361_reg(device, 0x13B, gm[(15 - i)]); write_ad9361_reg(device, 0x13F, 0x06); write_ad9361_reg(device, 0x13C, 0x00); write_ad9361_reg(device, 0x13C, 0x00); } /* Clear write bit and stop clock. */ write_ad9361_reg(device, 0x13f, 0x02); write_ad9361_reg(device, 0x13C, 0x00); write_ad9361_reg(device, 0x13C, 0x00); write_ad9361_reg(device, 0x13f, 0x00); } /* Program the gain table. * * There are three different gain tables for different frequency ranges! */ void program_gain_table(ad9361_device_t* device) { /* Figure out which gain table we should be using for our current * frequency band. */ uint8_t (*gain_table)[5] = NULL; uint8_t new_gain_table; if(device->rx_freq < 1300e6) { gain_table = gain_table_sub_1300mhz; new_gain_table = 1; } else if(device->rx_freq < 4e9) { gain_table = gain_table_1300mhz_to_4000mhz; new_gain_table = 2; } else if(device->rx_freq <= 6e9) { gain_table = gain_table_4000mhz_to_6000mhz; new_gain_table = 3; } else { post_err_msg("Wrong _rx_freq value"); new_gain_table = 1; } /* Only re-program the gain table if there has been a band change. */ if(device->curr_gain_table == new_gain_table) { return; } else { device->curr_gain_table = new_gain_table; } /* Okay, we have to program a new gain table. Sucks, brah. Start the * gain table clock. */ write_ad9361_reg(device, 0x137, 0x1A); /* IT'S PROGRAMMING TIME. */ uint8_t index = 0; for(; index < 77; index++) { write_ad9361_reg(device, 0x130, index); write_ad9361_reg(device, 0x131, gain_table[index][1]); write_ad9361_reg(device, 0x132, gain_table[index][2]); write_ad9361_reg(device, 0x133, gain_table[index][3]); write_ad9361_reg(device, 0x137, 0x1E); write_ad9361_reg(device, 0x134, 0x00); write_ad9361_reg(device, 0x134, 0x00); } /* Everything above the 77th index is zero. */ for(; index < 91; index++) { write_ad9361_reg(device, 0x130, index); write_ad9361_reg(device, 0x131, 0x00); write_ad9361_reg(device, 0x132, 0x00); write_ad9361_reg(device, 0x133, 0x00); write_ad9361_reg(device, 0x137, 0x1E); write_ad9361_reg(device, 0x134, 0x00); write_ad9361_reg(device, 0x134, 0x00); } /* Clear the write bit and stop the gain clock. */ write_ad9361_reg(device, 0x137, 0x1A); write_ad9361_reg(device, 0x134, 0x00); write_ad9361_reg(device, 0x134, 0x00); write_ad9361_reg(device, 0x137, 0x00); } /* Setup gain control registers. * * This really only needs to be done once, at initialization. */ void setup_gain_control(ad9361_device_t* device) { write_ad9361_reg(device, 0x0FA, 0xE0); // Gain Control Mode Select write_ad9361_reg(device, 0x0FB, 0x08); // Table, Digital Gain, Man Gain Ctrl write_ad9361_reg(device, 0x0FC, 0x23); // Incr Step Size, ADC Overrange Size write_ad9361_reg(device, 0x0FD, 0x4C); // Max Full/LMT Gain Table Index write_ad9361_reg(device, 0x0FE, 0x44); // Decr Step Size, Peak Overload Time write_ad9361_reg(device, 0x100, 0x6F); // Max Digital Gain write_ad9361_reg(device, 0x104, 0x2F); // ADC Small Overload Threshold write_ad9361_reg(device, 0x105, 0x3A); // ADC Large Overload Threshold write_ad9361_reg(device, 0x107, 0x31); // Large LMT Overload Threshold write_ad9361_reg(device, 0x108, 0x39); // Small LMT Overload Threshold write_ad9361_reg(device, 0x109, 0x23); // Rx1 Full/LMT Gain Index write_ad9361_reg(device, 0x10A, 0x58); // Rx1 LPF Gain Index write_ad9361_reg(device, 0x10B, 0x00); // Rx1 Digital Gain Index write_ad9361_reg(device, 0x10C, 0x23); // Rx2 Full/LMT Gain Index write_ad9361_reg(device, 0x10D, 0x18); // Rx2 LPF Gain Index write_ad9361_reg(device, 0x10E, 0x00); // Rx2 Digital Gain Index write_ad9361_reg(device, 0x114, 0x30); // Low Power Threshold write_ad9361_reg(device, 0x11A, 0x27); // Initial LMT Gain Limit write_ad9361_reg(device, 0x081, 0x00); // Tx Symbol Gain Control } /* Setup the RX or TX synthesizers. * * This setup depends on a fixed look-up table, which is stored in an * included header file. The table is indexed based on the passed VCO rate. */ void setup_synth(ad9361_device_t* device, int which, double vcorate) { /* The vcorates in the vco_index array represent lower boundaries for * rates. Once we find a match, we use that index to look-up the rest of * the register values in the LUT. */ int vcoindex = 0; int i; for(i = 0; i < 53; i++) { vcoindex = i; if(vcorate > vco_index[i]) { break; } } if (vcoindex > 53) post_err_msg("vcoindex > 53"); /* Parse the values out of the LUT based on our calculated index... */ uint8_t vco_output_level = synth_cal_lut[vcoindex][0]; uint8_t vco_varactor = synth_cal_lut[vcoindex][1]; uint8_t vco_bias_ref = synth_cal_lut[vcoindex][2]; uint8_t vco_bias_tcf = synth_cal_lut[vcoindex][3]; uint8_t vco_cal_offset = synth_cal_lut[vcoindex][4]; uint8_t vco_varactor_ref = synth_cal_lut[vcoindex][5]; uint8_t charge_pump_curr = synth_cal_lut[vcoindex][6]; uint8_t loop_filter_c2 = synth_cal_lut[vcoindex][7]; uint8_t loop_filter_c1 = synth_cal_lut[vcoindex][8]; uint8_t loop_filter_r1 = synth_cal_lut[vcoindex][9]; uint8_t loop_filter_c3 = synth_cal_lut[vcoindex][10]; uint8_t loop_filter_r3 = synth_cal_lut[vcoindex][11]; /* ... annnd program! */ if(which == RX_TYPE) { write_ad9361_reg(device, 0x23a, 0x40 | vco_output_level); write_ad9361_reg(device, 0x239, 0xC0 | vco_varactor); write_ad9361_reg(device, 0x242, vco_bias_ref | (vco_bias_tcf << 3)); write_ad9361_reg(device, 0x238, (vco_cal_offset << 3)); write_ad9361_reg(device, 0x245, 0x00); write_ad9361_reg(device, 0x251, vco_varactor_ref); write_ad9361_reg(device, 0x250, 0x70); write_ad9361_reg(device, 0x23b, 0x80 | charge_pump_curr); write_ad9361_reg(device, 0x23e, loop_filter_c1 | (loop_filter_c2 << 4)); write_ad9361_reg(device, 0x23f, loop_filter_c3 | (loop_filter_r1 << 4)); write_ad9361_reg(device, 0x240, loop_filter_r3); } else if(which == TX_TYPE) { write_ad9361_reg(device, 0x27a, 0x40 | vco_output_level); write_ad9361_reg(device, 0x279, 0xC0 | vco_varactor); write_ad9361_reg(device, 0x282, vco_bias_ref | (vco_bias_tcf << 3)); write_ad9361_reg(device, 0x278, (vco_cal_offset << 3)); write_ad9361_reg(device, 0x285, 0x00); write_ad9361_reg(device, 0x291, vco_varactor_ref); write_ad9361_reg(device, 0x290, 0x70); write_ad9361_reg(device, 0x27b, 0x80 | charge_pump_curr); write_ad9361_reg(device, 0x27e, loop_filter_c1 | (loop_filter_c2 << 4)); write_ad9361_reg(device, 0x27f, loop_filter_c3 | (loop_filter_r1 << 4)); write_ad9361_reg(device, 0x280, loop_filter_r3); } else { post_err_msg("[setup_synth] INVALID_CODE_PATH"); } } /* Tune the baseband VCO. * * This clock signal is what gets fed to the ADCs and DACs. This function is * not exported outside of this file, and is invoked based on the rate * fed to the public set_clock_rate function. */ double tune_bbvco(ad9361_device_t* device, const double rate) { msg("[tune_bbvco] rate=%.10f", rate); /* Let's not re-tune to the same frequency over and over... */ if(freq_is_nearly_equal(rate, device->req_coreclk)) { return device->adcclock_freq; } device->req_coreclk = rate; const double fref = 40e6; const int modulus = 2088960; const double vcomax = 1430e6; const double vcomin = 672e6; double vcorate; int vcodiv; /* Iterate over VCO dividers until appropriate divider is found. */ int i = 1; for(; i <= 6; i++) { vcodiv = 1 << i; vcorate = rate * vcodiv; if(vcorate >= vcomin && vcorate <= vcomax) break; } if(i == 7) post_err_msg("tune_bbvco: wrong vcorate"); msg("[tune_bbvco] vcodiv=%d vcorate=%.10f", vcodiv, vcorate); /* Fo = Fref * (Nint + Nfrac / mod) */ int nint = vcorate / fref; msg("[tune_bbvco] (nint)=%.10f", (vcorate / fref)); int nfrac = lround(((vcorate / fref) - (double)nint) * (double)modulus); msg("[tune_bbvco] (nfrac)=%.10f", (((vcorate / fref) - (double)nint) * (double)modulus)); msg("[tune_bbvco] nint=%d nfrac=%d", nint, nfrac); double actual_vcorate = fref * ((double)nint + ((double)nfrac / (double)modulus)); /* Scale CP current according to VCO rate */ const double icp_baseline = 150e-6; const double freq_baseline = 1280e6; double icp = icp_baseline * (actual_vcorate / freq_baseline); int icp_reg = (icp / 25e-6) - 1; write_ad9361_reg(device, 0x045, 0x00); // REFCLK / 1 to BBPLL write_ad9361_reg(device, 0x046, icp_reg & 0x3F); // CP current write_ad9361_reg(device, 0x048, 0xe8); // BBPLL loop filters write_ad9361_reg(device, 0x049, 0x5b); // BBPLL loop filters write_ad9361_reg(device, 0x04a, 0x35); // BBPLL loop filters write_ad9361_reg(device, 0x04b, 0xe0); write_ad9361_reg(device, 0x04e, 0x10); // Max accuracy write_ad9361_reg(device, 0x043, nfrac & 0xFF); // Nfrac[7:0] write_ad9361_reg(device, 0x042, (nfrac >> 8) & 0xFF); // Nfrac[15:8] write_ad9361_reg(device, 0x041, (nfrac >> 16) & 0xFF); // Nfrac[23:16] write_ad9361_reg(device, 0x044, nint); // Nint calibrate_lock_bbpll(device); device->regs.bbpll = (device->regs.bbpll & 0xF8) | i; device->bbpll_freq = actual_vcorate; device->adcclock_freq = (actual_vcorate / vcodiv); return device->adcclock_freq; } /* This function re-programs all of the gains in the system. * * Because the gain values match to different gain indices based on the * current operating band, this function can be called to update all gain * settings to the appropriate index after a re-tune. */ void program_gains(uint64_t handle) { ad9361_device_t* device = get_ad9361_device(handle); set_gain(handle, RX_TYPE,1, device->rx1_gain); set_gain(handle, RX_TYPE,2, device->rx2_gain); set_gain(handle, TX_TYPE,1, device->tx1_gain); set_gain(handle, TX_TYPE,2, device->tx2_gain); } /* This is the internal tune function, not available for a host call. * * Calculate the VCO settings for the requested frquency, and then either * tune the RX or TX VCO. */ double tune_helper(ad9361_device_t* device, int which, const double value) { /* The RFPLL runs from 6 GHz - 12 GHz */ const double fref = 80e6; const int modulus = 8388593; const double vcomax = 12e9; const double vcomin = 6e9; double vcorate; int vcodiv; /* Iterate over VCO dividers until appropriate divider is found. */ int i; for(i = 0; i <= 6; i++) { vcodiv = 2 << i; vcorate = value * vcodiv; if(vcorate >= vcomin && vcorate <= vcomax) break; } if(i == 7) post_err_msg("RFVCO can't find valid VCO rate!"); int nint = vcorate / fref; int nfrac = ((vcorate / fref) - nint) * modulus; double actual_vcorate = fref * (nint + (double)(nfrac)/modulus); double actual_lo = actual_vcorate / vcodiv; if(which == RX_TYPE) { device->req_rx_freq = value; /* Set band-specific settings. */ if(value < ad9361_client_get_band_edge(device->product, AD9361_RX_BAND0)) { device->regs.inputsel = (device->regs.inputsel & 0xC0) | 0x30; } else if((value >= ad9361_client_get_band_edge(device->product, AD9361_RX_BAND0)) && (value < ad9361_client_get_band_edge(device->product, AD9361_RX_BAND1))) { device->regs.inputsel = (device->regs.inputsel & 0xC0) | 0x0C; } else if((value >= ad9361_client_get_band_edge(device->product, AD9361_RX_BAND1)) && (value <= 6e9)) { device->regs.inputsel = (device->regs.inputsel & 0xC0) | 0x03; } else { post_err_msg("[tune_helper] INVALID_CODE_PATH"); } write_ad9361_reg(device, 0x004, device->regs.inputsel); /* Store vcodiv setting. */ device->regs.vcodivs = (device->regs.vcodivs & 0xF0) | (i & 0x0F); /* Setup the synthesizer. */ setup_synth(device, RX_TYPE, actual_vcorate); /* Tune!!!! */ write_ad9361_reg(device, 0x233, nfrac & 0xFF); write_ad9361_reg(device, 0x234, (nfrac >> 8) & 0xFF); write_ad9361_reg(device, 0x235, (nfrac >> 16) & 0xFF); write_ad9361_reg(device, 0x232, (nint >> 8) & 0xFF); write_ad9361_reg(device, 0x231, nint & 0xFF); write_ad9361_reg(device, 0x005, device->regs.vcodivs); /* Lock the PLL! */ ad9361_msleep(2); if((read_ad9361_reg(device, 0x247) & 0x02) == 0) { post_err_msg("RX PLL NOT LOCKED"); } device->rx_freq = actual_lo; return actual_lo; } else { device->req_tx_freq = value; /* Set band-specific settings. */ if(value < ad9361_client_get_band_edge(device->product, AD9361_TX_BAND0)) { device->regs.inputsel = device->regs.inputsel | 0x40; } else if((value >= ad9361_client_get_band_edge(device->product, AD9361_TX_BAND0)) && (value <= 6e9)) { device->regs.inputsel = device->regs.inputsel & 0xBF; } else { post_err_msg("[tune_helper] INVALID_CODE_PATH"); } write_ad9361_reg(device, 0x004, device->regs.inputsel); /* Store vcodiv setting. */ device->regs.vcodivs = (device->regs.vcodivs & 0x0F) | ((i & 0x0F) << 4); /* Setup the synthesizer. */ setup_synth(device, TX_TYPE, actual_vcorate); /* Tune it, homey. */ write_ad9361_reg(device, 0x273, nfrac & 0xFF); write_ad9361_reg(device, 0x274, (nfrac >> 8) & 0xFF); write_ad9361_reg(device, 0x275, (nfrac >> 16) & 0xFF); write_ad9361_reg(device, 0x272, (nint >> 8) & 0xFF); write_ad9361_reg(device, 0x271, nint & 0xFF); write_ad9361_reg(device, 0x005, device->regs.vcodivs); /* Lock the PLL! */ ad9361_msleep(2); if((read_ad9361_reg(device, 0x287) & 0x02) == 0) { post_err_msg("TX PLL NOT LOCKED"); } device->tx_freq = actual_lo; return actual_lo; } } /* Configure the various clock / sample rates in the RX and TX chains. * * Functionally, this function configures AD9361's RX and TX rates. For * a requested TX & RX rate, it sets the interpolation & decimation filters, * and tunes the VCO that feeds the ADCs and DACs. */ double setup_rates(ad9361_device_t* device, const double rate) { /* If we make it into this function, then we are tuning to a new rate. * Store the new rate. */ device->req_clock_rate = rate; /* Set the decimation and interpolation values in the RX and TX chains. * This also switches filters in / out. Note that all transmitters and * receivers have to be turned on for the calibration portion of * bring-up, and then they will be switched out to reflect the actual * user-requested antenna selections. */ int divfactor = 0; device->tfir_factor = 0; if(rate < 0.33e6) { // RX1 + RX2 enabled, 3, 2, 2, 4 device->regs.rxfilt = B8( 11101111 ) ; // TX1 + TX2 enabled, 3, 2, 2, 4 device->regs.txfilt = B8( 11101111 ) ; divfactor = 48; device->tfir_factor = 2; } else if(rate < 0.66e6) { // RX1 + RX2 enabled, 2, 2, 2, 4 device->regs.rxfilt = B8( 11011111 ) ; // TX1 + TX2 enabled, 2, 2, 2, 4 device->regs.txfilt = B8( 11011111 ) ; divfactor = 32; device->tfir_factor = 2; } else if(rate <= 20e6) { // RX1 + RX2 enabled, 2, 2, 2, 2 device->regs.rxfilt = B8( 11011110 ) ; // TX1 + TX2 enabled, 2, 2, 2, 2 device->regs.txfilt = B8( 11011110 ) ; divfactor = 16; device->tfir_factor = 2; } else if((rate > 20e6) && (rate < 23e6)) { // RX1 + RX2 enabled, 3, 2, 2, 2 device->regs.rxfilt = B8( 11101110 ) ; // TX1 + TX2 enabled, 3, 1, 2, 2 device->regs.txfilt = B8( 11100110 ) ; divfactor = 24; device->tfir_factor = 2; } else if((rate >= 23e6) && (rate < 41e6)) { // RX1 + RX2 enabled, 2, 2, 2, 2 device->regs.rxfilt = B8( 11011110 ) ; // TX1 + TX2 enabled, 1, 2, 2, 2 device->regs.txfilt = B8( 11001110 ) ; divfactor = 16; device->tfir_factor = 2; } else if((rate >= 41e6) && (rate <= 56e6)) { // RX1 + RX2 enabled, 3, 1, 2, 2 device->regs.rxfilt = B8( 11100110 ) ; // TX1 + TX2 enabled, 3, 1, 1, 2 device->regs.txfilt = B8( 11100010 ) ; divfactor = 12; device->tfir_factor = 2; } else if((rate > 56e6) && (rate <= 61.44e6)) { // RX1 + RX2 enabled, 3, 1, 1, 2 device->regs.rxfilt = B8( 11100010 ) ; // TX1 + TX2 enabled, 3, 1, 1, 1 device->regs.txfilt = B8( 11100001 ) ; divfactor = 6; device->tfir_factor = 1; } else { // should never get in here post_err_msg("[setup_rates] INVALID_CODE_PATH"); } msg("[setup_rates] divfactor=%d", divfactor); /* Tune the BBPLL to get the ADC and DAC clocks. */ const double adcclk = tune_bbvco(device, rate * divfactor); double dacclk = adcclk; /* The DAC clock must be <= 336e6, and is either the ADC clock or 1/2 the * ADC clock.*/ if(adcclk > 336e6) { /* Make the DAC clock = ADC/2, and bypass the TXFIR. */ device->regs.bbpll = device->regs.bbpll | 0x08; dacclk = adcclk / 2.0; } else { device->regs.bbpll = device->regs.bbpll & 0xF7; } /* Set the dividers / interpolators in AD9361. */ write_ad9361_reg(device, 0x002, device->regs.txfilt); write_ad9361_reg(device, 0x003, device->regs.rxfilt); write_ad9361_reg(device, 0x004, device->regs.inputsel); write_ad9361_reg(device, 0x00A, device->regs.bbpll); msg("[setup_rates] adcclk=%f", adcclk); device->baseband_bw = (adcclk / divfactor); /* The Tx & Rx FIR calculate 16 taps per clock cycle. This limits the number of available taps to the ratio of DAC_CLK/ADC_CLK to the input data rate multiplied by 16. For example, if the input data rate is 25 MHz and DAC_CLK is 100 MHz, then the ratio of DAC_CLK to the input data rate is 100/25 or 4. In this scenario, the total number of taps available is 64. Also, whilst the Rx FIR filter always has memory available for 128 taps, the Tx FIR Filter can only support a maximum length of 64 taps in 1x interpolation mode, and 128 taps in 2x & 4x modes. */ const int max_tx_taps = AD9361_MIN(AD9361_MIN((16 * (int)((dacclk / rate) + 0.5)), 128), (device->tfir_factor==1) ? 64 : 128); const int max_rx_taps = AD9361_MIN((16 * (int)((adcclk / rate) + 0.5)), 128); const int num_tx_taps = get_num_taps(max_tx_taps); const int num_rx_taps = get_num_taps(max_rx_taps); setup_tx_fir(device, num_tx_taps); setup_rx_fir(device, num_rx_taps); return device->baseband_bw; } /*********************************************************************** * Publicly exported functions to host calls **********************************************************************/ void init_ad9361(uint64_t handle) { ad9361_device_t* device = get_ad9361_device(handle); /* Initialize shadow registers. */ device->regs.vcodivs = 0x00; device->regs.inputsel = 0x30; device->regs.rxfilt = 0x00; device->regs.txfilt = 0x00; device->regs.bbpll = 0x02; device->regs.bbftune_config = 0x1e; device->regs.bbftune_mode = 0x1e; /* Initialize private VRQ fields. */ device->rx_freq = 0.0; device->tx_freq = 0.0; device->req_rx_freq = 0.0; device->req_tx_freq = 0.0; device->baseband_bw = 0.0; device->req_clock_rate = 0.0; device->req_coreclk = 0.0; device->bbpll_freq = 0.0; device->adcclock_freq = 0.0; device->rx_bbf_tunediv = 0; device->curr_gain_table = 0; device->rx1_gain = 0; device->rx2_gain = 0; device->tx1_gain = 0; device->tx2_gain = 0; /* Reset the device. */ write_ad9361_reg(device, 0x000,0x01); write_ad9361_reg(device, 0x000,0x00); ad9361_msleep(20); /* There is not a WAT big enough for this. */ write_ad9361_reg(device, 0x3df, 0x01); write_ad9361_reg(device, 0x2a6, 0x0e); // Enable master bias write_ad9361_reg(device, 0x2a8, 0x0e); // Set bandgap trim /* Set RFPLL ref clock scale to REFCLK * 2 */ write_ad9361_reg(device, 0x2ab, 0x07); write_ad9361_reg(device, 0x2ac, 0xff); /* Enable clocks. */ switch (ad9361_client_get_clocking_mode(device->product)) { case AD9361_XTAL_N_CLK_PATH: { write_ad9361_reg(device, 0x009, 0x17); } break; case AD9361_XTAL_P_CLK_PATH: { write_ad9361_reg(device, 0x009, 0x07); write_ad9361_reg(device, 0x292, 0x08); write_ad9361_reg(device, 0x293, 0x80); write_ad9361_reg(device, 0x294, 0x00); write_ad9361_reg(device, 0x295, 0x14); } break; default: post_err_msg("NOT IMPLEMENTED"); } ad9361_msleep(20); /* Tune the BBPLL, write TX and RX FIRS. */ setup_rates(device, 50e6); /* Setup data ports (FDD dual port DDR): * FDD dual port DDR CMOS no swap. * Force TX on one port, RX on the other. */ switch (ad9361_client_get_digital_interface_mode(device->product)) { case AD9361_DDR_FDD_LVCMOS: { write_ad9361_reg(device, 0x010, 0xc8); write_ad9361_reg(device, 0x011, 0x00); write_ad9361_reg(device, 0x012, 0x02); } break; case AD9361_DDR_FDD_LVDS: { write_ad9361_reg(device, 0x010, 0xcc); write_ad9361_reg(device, 0x011, 0x00); write_ad9361_reg(device, 0x012, 0x10); //LVDS Specific write_ad9361_reg(device, 0x03C, 0x23); write_ad9361_reg(device, 0x03D, 0xFF); write_ad9361_reg(device, 0x03E, 0x0F); } break; default: post_err_msg("NOT IMPLEMENTED"); } /* Data delay for TX and RX data clocks */ digital_interface_delays_t timing = ad9361_client_get_digital_interface_timing(device->product); uint8_t rx_delays = ((timing.rx_clk_delay & 0xF) << 4) | (timing.rx_data_delay & 0xF); uint8_t tx_delays = ((timing.tx_clk_delay & 0xF) << 4) | (timing.tx_data_delay & 0xF); write_ad9361_reg(device, 0x006, rx_delays); write_ad9361_reg(device, 0x007, tx_delays); /* Setup AuxDAC */ write_ad9361_reg(device, 0x018, 0x00); // AuxDAC1 Word[9:2] write_ad9361_reg(device, 0x019, 0x00); // AuxDAC2 Word[9:2] write_ad9361_reg(device, 0x01A, 0x00); // AuxDAC1 Config and Word[1:0] write_ad9361_reg(device, 0x01B, 0x00); // AuxDAC2 Config and Word[1:0] write_ad9361_reg(device, 0x022, 0x4A); // Invert Bypassed LNA write_ad9361_reg(device, 0x023, 0xFF); // AuxDAC Manaul/Auto Control write_ad9361_reg(device, 0x026, 0x00); // AuxDAC Manual Select Bit/GPO Manual Select write_ad9361_reg(device, 0x030, 0x00); // AuxDAC1 Rx Delay write_ad9361_reg(device, 0x031, 0x00); // AuxDAC1 Tx Delay write_ad9361_reg(device, 0x032, 0x00); // AuxDAC2 Rx Delay write_ad9361_reg(device, 0x033, 0x00); // AuxDAC2 Tx Delay /* Setup AuxADC */ write_ad9361_reg(device, 0x00B, 0x00); // Temp Sensor Setup (Offset) write_ad9361_reg(device, 0x00C, 0x00); // Temp Sensor Setup (Temp Window) write_ad9361_reg(device, 0x00D, 0x03); // Temp Sensor Setup (Periodic Measure) write_ad9361_reg(device, 0x00F, 0x04); // Temp Sensor Setup (Decimation) write_ad9361_reg(device, 0x01C, 0x10); // AuxADC Setup (Clock Div) write_ad9361_reg(device, 0x01D, 0x01); // AuxADC Setup (Decimation/Enable) /* Setup control outputs. */ write_ad9361_reg(device, 0x035, 0x07); write_ad9361_reg(device, 0x036, 0xFF); /* Setup GPO */ write_ad9361_reg(device, 0x03a, 0x27); //set delay register write_ad9361_reg(device, 0x020, 0x00); // GPO Auto Enable Setup in RX and TX write_ad9361_reg(device, 0x027, 0x03); // GPO Manual and GPO auto value in ALERT write_ad9361_reg(device, 0x028, 0x00); // GPO_0 RX Delay write_ad9361_reg(device, 0x029, 0x00); // GPO_1 RX Delay write_ad9361_reg(device, 0x02A, 0x00); // GPO_2 RX Delay write_ad9361_reg(device, 0x02B, 0x00); // GPO_3 RX Delay write_ad9361_reg(device, 0x02C, 0x00); // GPO_0 TX Delay write_ad9361_reg(device, 0x02D, 0x00); // GPO_1 TX Delay write_ad9361_reg(device, 0x02E, 0x00); // GPO_2 TX Delay write_ad9361_reg(device, 0x02F, 0x00); // GPO_3 TX Delay write_ad9361_reg(device, 0x261, 0x00); // RX LO power write_ad9361_reg(device, 0x2a1, 0x00); // TX LO power write_ad9361_reg(device, 0x248, 0x0b); // en RX VCO LDO write_ad9361_reg(device, 0x288, 0x0b); // en TX VCO LDO write_ad9361_reg(device, 0x246, 0x02); // pd RX cal Tcf write_ad9361_reg(device, 0x286, 0x02); // pd TX cal Tcf write_ad9361_reg(device, 0x249, 0x8e); // rx vco cal length write_ad9361_reg(device, 0x289, 0x8e); // rx vco cal length write_ad9361_reg(device, 0x23b, 0x80); // set RX MSB?, FIXME 0x89 magic cp write_ad9361_reg(device, 0x27b, 0x80); // "" TX //FIXME 0x88 see above write_ad9361_reg(device, 0x243, 0x0d); // set rx prescaler bias write_ad9361_reg(device, 0x283, 0x0d); // "" TX write_ad9361_reg(device, 0x23d, 0x00); // Clear half VCO cal clock setting write_ad9361_reg(device, 0x27d, 0x00); // Clear half VCO cal clock setting /* The order of the following process is EXTREMELY important. If the * below functions are modified at all, device initialization and * calibration might be broken in the process! */ write_ad9361_reg(device, 0x015, 0x04); // dual synth mode, synth en ctrl en write_ad9361_reg(device, 0x014, 0x05); // use SPI for TXNRX ctrl, to ALERT, TX on write_ad9361_reg(device, 0x013, 0x01); // enable ENSM ad9361_msleep(1); calibrate_synth_charge_pumps(device); tune_helper(device, RX_TYPE, 800e6); tune_helper(device, TX_TYPE, 850e6); program_mixer_gm_subtable(device); program_gain_table(device); setup_gain_control(device); calibrate_baseband_rx_analog_filter(device); calibrate_baseband_tx_analog_filter(device); calibrate_rx_TIAs(device); calibrate_secondary_tx_filter(device); setup_adc(device); calibrate_tx_quadrature(device); calibrate_rx_quadrature(device); // cals done, set PPORT config switch (ad9361_client_get_digital_interface_mode(device->product)) { case AD9361_DDR_FDD_LVCMOS: { write_ad9361_reg(device, 0x012, 0x02); } break; case AD9361_DDR_FDD_LVDS: { write_ad9361_reg(device, 0x012, 0x10); } break; default: post_err_msg("NOT IMPLEMENTED"); } write_ad9361_reg(device, 0x013, 0x01); // Set ENSM FDD bit write_ad9361_reg(device, 0x015, 0x04); // dual synth mode, synth en ctrl en /* Default TX attentuation to 10dB on both TX1 and TX2 */ write_ad9361_reg(device, 0x073, 0x00); write_ad9361_reg(device, 0x074, 0x00); write_ad9361_reg(device, 0x075, 0x00); write_ad9361_reg(device, 0x076, 0x00); /* Setup RSSI Measurements */ write_ad9361_reg(device, 0x150, 0x0E); // RSSI Measurement Duration 0, 1 write_ad9361_reg(device, 0x151, 0x00); // RSSI Measurement Duration 2, 3 write_ad9361_reg(device, 0x152, 0xFF); // RSSI Weighted Multiplier 0 write_ad9361_reg(device, 0x153, 0x00); // RSSI Weighted Multiplier 1 write_ad9361_reg(device, 0x154, 0x00); // RSSI Weighted Multiplier 2 write_ad9361_reg(device, 0x155, 0x00); // RSSI Weighted Multiplier 3 write_ad9361_reg(device, 0x156, 0x00); // RSSI Delay write_ad9361_reg(device, 0x157, 0x00); // RSSI Wait write_ad9361_reg(device, 0x158, 0x0D); // RSSI Mode Select write_ad9361_reg(device, 0x15C, 0x67); // Power Measurement Duration /* Turn on the default RX & TX chains. */ set_active_chains(handle, true, false, false, false); /* Set TXers & RXers on (only works in FDD mode) */ write_ad9361_reg(device, 0x014, 0x21); } /* This function sets the RX / TX rate between AD9361 and the FPGA, and * thus determines the interpolation / decimation required in the FPGA to * achieve the user's requested rate. * * This is the only clock setting function that is exposed to the outside. */ double set_clock_rate(uint64_t handle, const double req_rate) { ad9361_device_t* device = get_ad9361_device(handle); if(req_rate > 61.44e6) { post_err_msg("Requested master clock rate outside range"); } msg("[set_clock_rate] req_rate=%.10f", req_rate); /* UHD has a habit of requesting the same rate like four times when it * starts up. This prevents that, and any bugs in user code that request * the same rate over and over. */ if(freq_is_nearly_equal(req_rate, device->req_clock_rate)) { return device->baseband_bw; } /* We must be in the SLEEP / WAIT state to do this. If we aren't already * there, transition the ENSM to State 0. */ uint8_t current_state = read_ad9361_reg(device, 0x017) & 0x0F; switch(current_state) { case 0x05: /* We are in the ALERT state. */ write_ad9361_reg(device, 0x014, 0x21); ad9361_msleep(5); write_ad9361_reg(device, 0x014, 0x00); break; case 0x0A: /* We are in the FDD state. */ write_ad9361_reg(device, 0x014, 0x00); break; default: post_err_msg("[set_clock_rate:1] AD9361 in unknown state"); break; }; /* Store the current chain / antenna selections so that we can restore * them at the end of this routine; all chains will be enabled from * within setup_rates for calibration purposes. */ uint8_t orig_tx_chains = device->regs.txfilt & 0xC0; uint8_t orig_rx_chains = device->regs.rxfilt & 0xC0; /* Call into the clock configuration / settings function. This is where * all the hard work gets done. */ double rate = setup_rates(device, req_rate); msg("[set_clock_rate] rate=%.10f", rate); /* Transition to the ALERT state and calibrate everything. */ write_ad9361_reg(device, 0x015, 0x04); //dual synth mode, synth en ctrl en write_ad9361_reg(device, 0x014, 0x05); //use SPI for TXNRX ctrl, to ALERT, TX on write_ad9361_reg(device, 0x013, 0x01); //enable ENSM ad9361_msleep(1); calibrate_synth_charge_pumps(device); tune_helper(device, RX_TYPE, device->rx_freq); tune_helper(device, TX_TYPE, device->tx_freq); program_mixer_gm_subtable(device); program_gain_table(device); setup_gain_control(device); program_gains(handle); calibrate_baseband_rx_analog_filter(device); calibrate_baseband_tx_analog_filter(device); calibrate_rx_TIAs(device); calibrate_secondary_tx_filter(device); setup_adc(device); calibrate_tx_quadrature(device); calibrate_rx_quadrature(device); // cals done, set PPORT config switch (ad9361_client_get_digital_interface_mode(device->product)) { case AD9361_DDR_FDD_LVCMOS: { write_ad9361_reg(device, 0x012, 0x02); } break; case AD9361_DDR_FDD_LVDS: { write_ad9361_reg(device, 0x012, 0x10); } break; default: post_err_msg("NOT IMPLEMENTED"); } write_ad9361_reg(device, 0x013, 0x01); // Set ENSM FDD bit write_ad9361_reg(device, 0x015, 0x04); // dual synth mode, synth en ctrl en /* End the function in the same state as the entry state. */ switch(current_state) { case 0x05: /* We are already in ALERT. */ break; case 0x0A: /* Transition back to FDD, and restore the original antenna * / chain selections. */ device->regs.txfilt = (device->regs.txfilt & 0x3F) | orig_tx_chains; device->regs.rxfilt = (device->regs.rxfilt & 0x3F) | orig_rx_chains; write_ad9361_reg(device, 0x002, device->regs.txfilt); write_ad9361_reg(device, 0x003, device->regs.rxfilt); write_ad9361_reg(device, 0x014, 0x21); break; default: post_err_msg("[set_clock_rate:2] AD9361 in unknown state"); break; }; return rate; } /* Set which of the four TX / RX chains provided by AD9361 are active. * * AD9361 provides two sets of chains, Side A and Side B. Each side * provides one TX antenna, and one RX antenna. The B200 maintains the USRP * standard of providing one antenna connection that is both TX & RX, and * one that is RX-only - for each chain. Thus, the possible antenna and * chain selections are: * * B200 Antenna AD9361 Side AD9361 Chain * ------------------------------------------------------------------- * TX / RX1 Side A TX1 (when switched to TX) * TX / RX1 Side A RX1 (when switched to RX) * RX1 Side A RX1 * * TX / RX2 Side B TX2 (when switched to TX) * TX / RX2 Side B RX2 (when switched to RX) * RX2 Side B RX2 */ void set_active_chains(uint64_t handle, bool tx1, bool tx2, bool rx1, bool rx2) { ad9361_device_t* device = get_ad9361_device(handle); /* Clear out the current active chain settings. */ device->regs.txfilt = device->regs.txfilt & 0x3F; device->regs.rxfilt = device->regs.rxfilt & 0x3F; /* Turn on the different chains based on the passed parameters. */ if(tx1) { device->regs.txfilt = device->regs.txfilt | 0x40; } if(tx2) { device->regs.txfilt = device->regs.txfilt | 0x80; } if(rx1) { device->regs.rxfilt = device->regs.rxfilt | 0x40; } if(rx2) { device->regs.rxfilt = device->regs.rxfilt | 0x80; } /* Check for FDD state */ uint8_t set_back_to_fdd = 0; uint8_t ensm_state = read_ad9361_reg(device, 0x017) & 0x0F; if (ensm_state == 0xA) // FDD { /* Put into ALERT state (via the FDD flush state). */ write_ad9361_reg(device, 0x014, 0x01); set_back_to_fdd = 1; } /* Wait for FDD flush state to complete (if necessary) */ while (ensm_state == 0xA || ensm_state == 0xB) ensm_state = read_ad9361_reg(device, 0x017) & 0x0F; /* Turn on / off the chains. */ write_ad9361_reg(device, 0x002, device->regs.txfilt); write_ad9361_reg(device, 0x003, device->regs.rxfilt); /* Put back into FDD state if necessary */ if (set_back_to_fdd) write_ad9361_reg(device, 0x014, 0x21); } /* Tune the RX or TX frequency. * * This is the publicly-accessible tune function. It makes sure the tune * isn't a redundant request, and if not, passes it on to the class's * internal tune function. * * After tuning, it runs any appropriate calibrations. */ double tune(uint64_t handle, int which, const double value) { ad9361_device_t* device = get_ad9361_device(handle); if(which == RX_TYPE) { if(freq_is_nearly_equal(value, device->req_rx_freq)) { return device->rx_freq; } } else if(which == TX_TYPE) { if(freq_is_nearly_equal(value, device->req_tx_freq)) { return device->tx_freq; } } else { post_err_msg("[tune] INVALID_CODE_PATH"); } /* If we aren't already in the ALERT state, we will need to return to * the FDD state after tuning. */ int not_in_alert = 0; if((read_ad9361_reg(device, 0x017) & 0x0F) != 5) { /* Force the device into the ALERT state. */ not_in_alert = 1; write_ad9361_reg(device, 0x014, 0x01); } /* Tune the RF VCO! */ double tune_freq = tune_helper(device, which, value); /* Run any necessary calibrations / setups */ if(which == RX_TYPE) { program_gain_table(device); } /* Update the gain settings. */ program_gains(handle); /* Run the calibration algorithms. */ calibrate_tx_quadrature(device); calibrate_rx_quadrature(device); /* If we were in the FDD state, return it now. */ if(not_in_alert) { write_ad9361_reg(device, 0x014, 0x21); } return tune_freq; } /* Set the gain of RX1, RX2, TX1, or TX2. * * Note that the 'value' passed to this function is the actual gain value, * _not_ the gain index. This is the opposite of the eval software's GUI! * Also note that the RX chains are done in terms of gain, and the TX chains * are done in terms of attenuation. */ double set_gain(uint64_t handle, int which, int n, const double value) { ad9361_device_t* device = get_ad9361_device(handle); if(which == RX_TYPE) { /* Indexing the gain tables requires an offset from the requested * amount of total gain in dB: * < 1300MHz: dB + 5 * >= 1300MHz and < 4000MHz: dB + 3 * >= 4000MHz and <= 6000MHz: dB + 14 */ int gain_offset = 0; if(device->rx_freq < 1300e6) { gain_offset = 5; } else if(device->rx_freq < 4000e6) { gain_offset = 3; } else { gain_offset = 14; } int gain_index = value + gain_offset; /* Clip the gain values to the proper min/max gain values. */ if(gain_index > 76) gain_index = 76; if(gain_index < 0) gain_index = 0; if(n == 1) { device->rx1_gain = value; write_ad9361_reg(device, 0x109, gain_index); } else { device->rx2_gain = value; write_ad9361_reg(device, 0x10c, gain_index); } return gain_index - gain_offset; } else { /* Setting the below bits causes a change in the TX attenuation word * to immediately take effect. */ write_ad9361_reg(device, 0x077, 0x40); write_ad9361_reg(device, 0x07c, 0x40); /* Each gain step is -0.25dB. Calculate the attenuation necessary * for the requested gain, convert it into gain steps, then write * the attenuation word. Max gain (so zero attenuation) is 89.75. */ double atten = AD9361_MAX_GAIN - value; int attenreg = atten * 4; if(n == 1) { device->tx1_gain = value; write_ad9361_reg(device, 0x073, attenreg & 0xFF); write_ad9361_reg(device, 0x074, (attenreg >> 8) & 0x01); } else { device->tx2_gain = value; write_ad9361_reg(device, 0x075, attenreg & 0xFF); write_ad9361_reg(device, 0x076, (attenreg >> 8) & 0x01); } return AD9361_MAX_GAIN - ((double)(attenreg)/ 4); } } /* This function is responsible to dispatch the vendor request call * to the proper handler */ void ad9361_dispatch(const char* vrb, char* vrb_out) { memcpy(vrb_out, vrb, AD9361_DISPATCH_PACKET_SIZE); //copy request to response memory tmp_req_buffer = vrb_out; ////////////////////////////////////////////// double ret_val = 0.0; int mask = 0; const ad9361_transaction_t *request = (const ad9361_transaction_t *)vrb; ad9361_transaction_t *response = (ad9361_transaction_t *)vrb_out; //msg("[dispatch_vrq] action=%d", request->action); //msg("[dispatch_vrq] action=%f", (double)request->action); switch (request->action) { case AD9361_ACTION_ECHO: break; // nothing to do case AD9361_ACTION_INIT: init_ad9361(request->handle); break; case AD9361_ACTION_SET_RX1_GAIN: ret_val = set_gain(request->handle,RX_TYPE,1,ad9361_double_unpack(request->value.gain)); ad9361_double_pack(ret_val, response->value.gain); break; case AD9361_ACTION_SET_TX1_GAIN: ret_val = set_gain(request->handle,TX_TYPE,1,ad9361_double_unpack(request->value.gain)); ad9361_double_pack(ret_val, response->value.gain); break; case AD9361_ACTION_SET_RX2_GAIN: ret_val = set_gain(request->handle,RX_TYPE,2,ad9361_double_unpack(request->value.gain)); ad9361_double_pack(ret_val, response->value.gain); break; case AD9361_ACTION_SET_TX2_GAIN: ret_val = set_gain(request->handle,TX_TYPE,2,ad9361_double_unpack(request->value.gain)); ad9361_double_pack(ret_val, response->value.gain); break; case AD9361_ACTION_SET_RX_FREQ: ret_val = tune(request->handle,RX_TYPE, ad9361_double_unpack(request->value.freq)); ad9361_double_pack(ret_val, response->value.freq); break; case AD9361_ACTION_SET_TX_FREQ: ret_val = tune(request->handle,TX_TYPE, ad9361_double_unpack(request->value.freq)); ad9361_double_pack(ret_val, response->value.freq); break; case AD9361_ACTION_SET_CODEC_LOOP: data_port_loopback(request->handle,request->value.codec_loop != 0); break; case AD9361_ACTION_SET_CLOCK_RATE: ret_val = set_clock_rate(request->handle,ad9361_double_unpack(request->value.rate)); ad9361_double_pack(ret_val, response->value.rate); break; case AD9361_ACTION_SET_ACTIVE_CHAINS: mask = request->value.enable_mask; set_active_chains(request->handle,mask & 1, mask & 2, mask & 4, mask & 8); break; default: post_err_msg("[ad9361_dispatch] NOT IMPLEMENTED"); break; } }