//
// Copyright 2014 Ettus Research
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "ad9361_filter_taps.h"
#include "ad9361_gain_tables.h"
#include "ad9361_synth_lut.h"
#include "ad9361_client.h"
#include "ad9361_device.h"
#define _USE_MATH_DEFINES
#include
#include
#include
#include
#include
#include
#include
#include
#include
////////////////////////////////////////////////////////////
// the following macros evaluate to a compile time constant
// macros By Tom Torfs - donated to the public domain
/* turn a numeric literal into a hex constant
(avoids problems with leading zeroes)
8-bit constants max value 0x11111111, always fits in unsigned long
*/
#define HEX__(n) 0x##n##LU
/* 8-bit conversion function */
#define B8__(x) ((x&0x0000000FLU)?1:0) \
+((x&0x000000F0LU)?2:0) \
+((x&0x00000F00LU)?4:0) \
+((x&0x0000F000LU)?8:0) \
+((x&0x000F0000LU)?16:0) \
+((x&0x00F00000LU)?32:0) \
+((x&0x0F000000LU)?64:0) \
+((x&0xF0000000LU)?128:0)
/* for upto 8-bit binary constants */
#define B8(d) ((unsigned char)B8__(HEX__(d)))
////////////////////////////////////////////////////////////
namespace uhd { namespace usrp {
/* This is a simple comparison for very large double-precision floating
* point numbers. It is used to prevent re-tunes for frequencies that are
* the same but not 'exactly' because of data precision issues. */
// TODO: see if we can avoid the need for this function
int freq_is_nearly_equal(double a, double b) {
return std::max(a,b) - std::min(a,b) < 1;
}
/***********************************************************************
* Filter functions
**********************************************************************/
/* This function takes in the calculated maximum number of FIR taps, and
* returns a number of taps that makes AD9361 happy. */
int get_num_taps(int max_num_taps) {
int num_taps = 0;
int num_taps_list[] = {16, 32, 48, 64, 80, 96, 112, 128};
int i;
for(i = 1; i < 8; i++) {
if(max_num_taps >= num_taps_list[i]) {
continue;
} else {
num_taps = num_taps_list[i - 1];
break;
}
} if(num_taps == 0) { num_taps = 128; }
return num_taps;
}
const double ad9361_device_t::AD9361_MAX_GAIN = 89.75;
const double ad9361_device_t::AD9361_MIN_CLOCK_RATE = 220e3;
const double ad9361_device_t::AD9361_MAX_CLOCK_RATE = 61.44e6;
const double ad9361_device_t::AD9361_CAL_VALID_WINDOW = 100e6;
// Max bandwdith is due to filter rolloff in analog filter stage
const double ad9361_device_t::AD9361_RECOMMENDED_MAX_BANDWIDTH = 56e6;
/* Startup RF frequencies */
const double ad9361_device_t::DEFAULT_RX_FREQ = 800e6;
const double ad9361_device_t::DEFAULT_TX_FREQ = 850e6;
/* Program either the RX or TX FIR filter.
*
* The process is the same for both filters, but the function must be told
* how many taps are in the filter, and given a vector of the taps
* themselves. */
void ad9361_device_t::_program_fir_filter(direction_t direction, chain_t chain, int num_taps, uint16_t *coeffs)
{
uint16_t base;
/* RX and TX filters use largely identical sets of programming registers.
Select the appropriate bank of registers here. */
if (direction == RX) {
base = 0x0f0;
} else {
base = 0x060;
}
/* Encode number of filter taps for programming register */
uint8_t reg_numtaps = (((num_taps / 16) - 1) & 0x07) << 5;
uint8_t reg_chain = 0;
switch (chain) {
case CHAIN_1:
reg_chain = 0x01 << 3;
break;
case CHAIN_2:
reg_chain = 0x02 << 3;
break;
default:
reg_chain = 0x03 << 3;
}
/* Turn on the filter clock. */
_io_iface->poke8(base + 5, reg_numtaps | reg_chain | 0x02);
boost::this_thread::sleep(boost::posix_time::milliseconds(1));
/* Zero the unused taps just in case they have stale data */
int addr;
for (addr = num_taps; addr < 128; addr++) {
_io_iface->poke8(base + 0, addr);
_io_iface->poke8(base + 1, 0x0);
_io_iface->poke8(base + 2, 0x0);
_io_iface->poke8(base + 5, reg_numtaps | reg_chain | (1 << 1) | (1 << 2));
_io_iface->poke8(base + 4, 0x00);
_io_iface->poke8(base + 4, 0x00);
}
/* Iterate through indirect programming of filter coeffs using ADI recomended procedure */
for (addr = 0; addr < num_taps; addr++) {
_io_iface->poke8(base + 0, addr);
_io_iface->poke8(base + 1, (coeffs[addr]) & 0xff);
_io_iface->poke8(base + 2, (coeffs[addr] >> 8) & 0xff);
_io_iface->poke8(base + 5, reg_numtaps | reg_chain | (1 << 1) | (1 << 2));
_io_iface->poke8(base + 4, 0x00);
_io_iface->poke8(base + 4, 0x00);
}
/* UG-671 states (page 25) (paraphrased and clarified):
" After the table has been programmed, write to register BASE+5 with the write bit D2 cleared and D1 high.
Then, write to register BASE+5 again with D1 clear, thus ensuring that the write bit resets internally
before the clock stops. Wait 4 sample clock periods after setting D2 high while that data writes into the table"
*/
_io_iface->poke8(base + 5, reg_numtaps | reg_chain | (1 << 1));
if (direction == RX) {
_io_iface->poke8(base + 5, reg_numtaps | reg_chain );
/* Rx Gain, set to prevent digital overflow/saturation in filters
0:+6dB, 1:0dB, 2:-6dB, 3:-12dB
page 35 of UG-671 */
_io_iface->poke8(base + 6, 0x02); /* Also turn on -6dB Rx gain here, to stop filter overfow.*/
} else {
/* Tx Gain. bit[0]. set to prevent digital overflow/saturation in filters
0: 0dB, 1:-6dB
page 25 of UG-671 */
_io_iface->poke8(base + 5, reg_numtaps | reg_chain );
}
}
/* Program the RX FIR Filter. */
void ad9361_device_t::_setup_rx_fir(size_t num_taps, int32_t decimation)
{
if (not (decimation == 1 or decimation == 2 or decimation == 4)) {
throw uhd::runtime_error("[ad9361_device_t] Invalid Rx FIR decimation.");
}
boost::scoped_array coeffs(new uint16_t[num_taps]);
for (size_t i = 0; i < num_taps; i++) {
switch (num_taps) {
case 128:
coeffs[i] = uint16_t((decimation==4) ? fir_128_x4_coeffs[i] : hb127_coeffs[i]);
break;
case 96:
coeffs[i] = uint16_t((decimation==4) ? fir_96_x4_coeffs[i] : hb95_coeffs[i]);
break;
case 64:
coeffs[i] = uint16_t((decimation==4) ? fir_64_x4_coeffs[i] : hb63_coeffs[i]);
break;
case 48:
coeffs[i] = uint16_t((decimation==4) ? fir_48_x4_coeffs[i] : hb47_coeffs[i]);
break;
default:
throw uhd::runtime_error("[ad9361_device_t] Unsupported number of Rx FIR taps.");
}
}
_program_fir_filter(RX, CHAIN_BOTH, num_taps, coeffs.get());
}
/* Program the TX FIR Filter. */
void ad9361_device_t::_setup_tx_fir(size_t num_taps, int32_t interpolation)
{
if (not (interpolation == 1 or interpolation == 2 or interpolation == 4)) {
throw uhd::runtime_error("[ad9361_device_t] Invalid Tx FIR interpolation.");
}
if (interpolation == 1 and num_taps > 64) {
throw uhd::runtime_error("[ad9361_device_t] Too many Tx FIR taps for interpolation value.");
}
boost::scoped_array coeffs(new uint16_t[num_taps]);
for (size_t i = 0; i < num_taps; i++) {
switch (num_taps) {
case 128:
coeffs[i] = uint16_t((interpolation==4) ? fir_128_x4_coeffs[i] : hb127_coeffs[i]);
break;
case 96:
coeffs[i] = uint16_t((interpolation==4) ? fir_96_x4_coeffs[i] : hb95_coeffs[i]);
break;
case 64:
coeffs[i] = uint16_t((interpolation==4) ? fir_64_x4_coeffs[i] : hb63_coeffs[i]);
break;
case 48:
coeffs[i] = uint16_t((interpolation==4) ? fir_48_x4_coeffs[i] : hb47_coeffs[i]);
break;
default:
throw uhd::runtime_error("[ad9361_device_t] Unsupported number of Tx FIR taps.");
}
}
_program_fir_filter(TX, CHAIN_BOTH, num_taps, coeffs.get());
}
/***********************************************************************
* Calibration functions
***********************************************************************/
/* Calibrate and lock the BBPLL.
*
* This function should be called anytime the BBPLL is tuned. */
void ad9361_device_t::_calibrate_lock_bbpll()
{
_io_iface->poke8(0x03F, 0x05); // Start the BBPLL calibration
_io_iface->poke8(0x03F, 0x01); // Clear the 'start' bit
/* Increase BBPLL KV and phase margin. */
_io_iface->poke8(0x04c, 0x86);
_io_iface->poke8(0x04d, 0x01);
_io_iface->poke8(0x04d, 0x05);
/* Wait for BBPLL lock. */
size_t count = 0;
while (!(_io_iface->peek8(0x05e) & 0x80)) {
if (count > 1000) {
throw uhd::runtime_error("[ad9361_device_t] BBPLL not locked");
break;
}
count++;
boost::this_thread::sleep(boost::posix_time::milliseconds(2));
}
}
/* Calibrate the synthesizer charge pumps.
*
* Technically, this calibration only needs to be done once, at device
* initialization. */
void ad9361_device_t::_calibrate_synth_charge_pumps()
{
/* If this function ever gets called, and the ENSM isn't already in the
* ALERT state, then something has gone horribly wrong. */
if ((_io_iface->peek8(0x017) & 0x0F) != 5) {
throw uhd::runtime_error("[ad9361_device_t] AD9361 not in ALERT during cal");
}
/* Calibrate the RX synthesizer charge pump. */
size_t count = 0;
_io_iface->poke8(0x23d, 0x04);
while (!(_io_iface->peek8(0x244) & 0x80)) {
if (count > 5) {
throw uhd::runtime_error("[ad9361_device_t] RX charge pump cal failure");
break;
}
count++;
boost::this_thread::sleep(boost::posix_time::milliseconds(1));
}
_io_iface->poke8(0x23d, 0x00);
/* Calibrate the TX synthesizer charge pump. */
count = 0;
_io_iface->poke8(0x27d, 0x04);
while (!(_io_iface->peek8(0x284) & 0x80)) {
if (count > 5) {
throw uhd::runtime_error("[ad9361_device_t] TX charge pump cal failure");
break;
}
count++;
boost::this_thread::sleep(boost::posix_time::milliseconds(1));
}
_io_iface->poke8(0x27d, 0x00);
}
/* Calibrate the analog BB RX filter.
*
* Note that the filter calibration depends heavily on the baseband
* bandwidth, so this must be re-done after any change to the RX sample
* rate.
* UG570 Page 33 states that this filter should be calibrated to 1.4 * bbbw*/
double ad9361_device_t::_calibrate_baseband_rx_analog_filter(double req_rfbw)
{
double bbbw = req_rfbw / 2.0;
if(bbbw > _baseband_bw / 2.0)
{
UHD_LOGGER_DEBUG("AD936X")<< "baseband bandwidth too large for current sample rate. Setting bandwidth to: "<<_baseband_bw;
bbbw = _baseband_bw / 2.0;
}
/* Baseband BW must be between 28e6 and 0.143e6.
* Max filter BW is 39.2 MHz. 39.2 / 1.4 = 28
* Min filter BW is 200kHz. 200 / 1.4 = 143 */
if (bbbw > 28e6) {
bbbw = 28e6;
} else if (bbbw < 0.143e6) {
bbbw = 0.143e6;
}
double rxtune_clk = ((1.4 * bbbw * 2 * M_PI) / M_LN2);
_rx_bbf_tunediv = std::min(511, uint16_t(std::ceil(_bbpll_freq / rxtune_clk)));
_regs.bbftune_config = (_regs.bbftune_config & 0xFE)
| ((_rx_bbf_tunediv >> 8) & 0x0001);
double bbbw_mhz = bbbw / 1e6;
double temp = ((bbbw_mhz - std::floor(bbbw_mhz)) * 1000) / 7.8125;
uint8_t bbbw_khz = std::min(127, uint8_t(std::floor(temp + 0.5)));
/* Set corner frequencies and dividers. */
_io_iface->poke8(0x1fb, (uint8_t) (bbbw_mhz));
_io_iface->poke8(0x1fc, bbbw_khz);
_io_iface->poke8(0x1f8, (_rx_bbf_tunediv & 0x00FF));
_io_iface->poke8(0x1f9, _regs.bbftune_config);
/* RX Mix Voltage settings - only change with apps engineer help. */
_io_iface->poke8(0x1d5, 0x3f);
_io_iface->poke8(0x1c0, 0x03);
/* Enable RX1 & RX2 filter tuners. */
_io_iface->poke8(0x1e2, 0x02);
_io_iface->poke8(0x1e3, 0x02);
/* Run the calibration! */
size_t count = 0;
_io_iface->poke8(0x016, 0x80);
while (_io_iface->peek8(0x016) & 0x80) {
if (count > 100) {
throw uhd::runtime_error("[ad9361_device_t] RX baseband filter cal FAILURE");
break;
}
count++;
boost::this_thread::sleep(boost::posix_time::milliseconds(1));
}
/* Disable RX1 & RX2 filter tuners. */
_io_iface->poke8(0x1e2, 0x03);
_io_iface->poke8(0x1e3, 0x03);
return bbbw;
}
/* Calibrate the analog BB TX filter.
*
* Note that the filter calibration depends heavily on the baseband
* bandwidth, so this must be re-done after any change to the TX sample
* rate.
* UG570 Page 32 states that this filter should be calibrated to 1.6 * bbbw*/
double ad9361_device_t::_calibrate_baseband_tx_analog_filter(double req_rfbw)
{
double bbbw = req_rfbw / 2.0;
if(bbbw > _baseband_bw / 2.0)
{
UHD_LOGGER_DEBUG("AD936X")<< "baseband bandwidth too large for current sample rate. Setting bandwidth to: "<<_baseband_bw;
bbbw = _baseband_bw / 2.0;
}
/* Baseband BW must be between 20e6 and 0.391e6.
* Max filter BW is 32 MHz. 32 / 1.6 = 20
* Min filter BW is 625 kHz. 625 / 1.6 = 391 */
if (bbbw > 20e6) {
bbbw = 20e6;
} else if (bbbw < 0.391e6) {
bbbw = 0.391e6;
}
double txtune_clk = ((1.6 * bbbw * 2 * M_PI) / M_LN2);
uint16_t txbbfdiv = std::min(511, uint16_t(std::ceil(_bbpll_freq / txtune_clk)));
_regs.bbftune_mode = (_regs.bbftune_mode & 0xFE)
| ((txbbfdiv >> 8) & 0x0001);
/* Program the divider values. */
_io_iface->poke8(0x0d6, (txbbfdiv & 0x00FF));
_io_iface->poke8(0x0d7, _regs.bbftune_mode);
/* Enable the filter tuner. */
_io_iface->poke8(0x0ca, 0x22);
/* Calibrate! */
size_t count = 0;
_io_iface->poke8(0x016, 0x40);
while (_io_iface->peek8(0x016) & 0x40) {
if (count > 100) {
throw uhd::runtime_error("[ad9361_device_t] TX baseband filter cal FAILURE");
break;
}
count++;
boost::this_thread::sleep(boost::posix_time::milliseconds(1));
}
/* Disable the filter tuner. */
_io_iface->poke8(0x0ca, 0x26);
return bbbw;
}
/* Calibrate the secondary TX filter.
*
* This filter also depends on the TX sample rate, so if a rate change is
* made, the previous calibration will no longer be valid.
* UG570 Page 32 states that this filter should be calibrated to 5 * bbbw*/
double ad9361_device_t::_calibrate_secondary_tx_filter(double req_rfbw)
{
double bbbw = req_rfbw / 2.0;
if(bbbw > _baseband_bw / 2.0)
{
UHD_LOGGER_DEBUG("AD936X")<< "baseband bandwidth too large for current sample rate. Setting bandwidth to: "<<_baseband_bw;
bbbw = _baseband_bw / 2.0;
}
/* Baseband BW must be between 20e6 and 0.54e6.
* Max filter BW is 100 MHz. 100 / 5 = 20
* Min filter BW is 2.7 MHz. 2.7 / 5 = 0.54 */
if (bbbw > 20e6) {
bbbw = 20e6;
} else if (bbbw < 0.54e6) {
bbbw = 0.54e6;
}
double bbbw_mhz = bbbw / 1e6;
/* Start with a resistor value of 100 Ohms. */
int res = 100;
/* Calculate target corner frequency. */
double corner_freq = 5 * bbbw_mhz * 2 * M_PI;
/* Iterate through RC values to determine correct combination. */
int cap = 0;
int i;
for (i = 0; i <= 3; i++) {
cap = static_cast(std::floor(0.5 + ((1 / ((corner_freq * res) * 1e6)) * 1e12)))
- 12;
if (cap <= 63) {
break;
}
res = res * 2;
}
if (cap > 63) {
cap = 63;
}
uint8_t reg0d0, reg0d1, reg0d2;
/* Translate baseband bandwidths to register settings. */
if ((bbbw_mhz * 2) <= 9) {
reg0d0 = 0x59;
} else if (((bbbw_mhz * 2) > 9) && ((bbbw_mhz * 2) <= 24)) {
reg0d0 = 0x56;
} else if ((bbbw_mhz * 2) > 24) {
reg0d0 = 0x57;
} else {
reg0d0 = 0x00;
throw uhd::runtime_error("[ad9361_device_t] Cal2ndTxFil: INVALID_CODE_PATH bad bbbw_mhz");
}
/* Translate resistor values to register settings. */
if (res == 100) {
reg0d1 = 0x0c;
} else if (res == 200) {
reg0d1 = 0x04;
} else if (res == 400) {
reg0d1 = 0x03;
} else if (res == 800) {
reg0d1 = 0x01;
} else {
reg0d1 = 0x0c;
}
reg0d2 = cap;
/* Program the above-calculated values. Sweet. */
_io_iface->poke8(0x0d2, reg0d2);
_io_iface->poke8(0x0d1, reg0d1);
_io_iface->poke8(0x0d0, reg0d0);
return bbbw;
}
/* Calibrate the RX TIAs.
*
* Note that the values in the TIA register, after calibration, vary with
* the RX gain settings.
* We do not really program the BW here. Most settings are taken form the BB LPF registers
* UG570 page 33 states that this filter should be calibrated to 2.5 * bbbw */
double ad9361_device_t::_calibrate_rx_TIAs(double req_rfbw)
{
uint8_t reg1eb = _io_iface->peek8(0x1eb) & 0x3F;
uint8_t reg1ec = _io_iface->peek8(0x1ec) & 0x7F;
uint8_t reg1e6 = _io_iface->peek8(0x1e6) & 0x07;
uint8_t reg1db = 0x00;
uint8_t reg1dc = 0x00;
uint8_t reg1dd = 0x00;
uint8_t reg1de = 0x00;
uint8_t reg1df = 0x00;
double bbbw = req_rfbw / 2.0;
if(bbbw > _baseband_bw / 2.0)
{
UHD_LOGGER_DEBUG("AD936X")<< "baseband bandwidth too large for current sample rate. Setting bandwidth to: "<<_baseband_bw;
bbbw = _baseband_bw / 2.0;
}
/* Baseband BW must be between 28e6 and 0.4e6.
* Max filter BW is 70 MHz. 70 / 2.5 = 28
* Min filter BW is 1 MHz. 1 / 2.5 = 0.4*/
if (bbbw > 28e6) {
bbbw = 28e6;
} else if (bbbw < 0.40e6) {
bbbw = 0.40e6;
}
double ceil_bbbw_mhz = std::ceil(bbbw / 1e6);
/* Do some crazy resistor and capacitor math. */
int Cbbf = (reg1eb * 160) + (reg1ec * 10) + 140;
int R2346 = 18300 * (reg1e6 & 0x07);
double CTIA_fF = (Cbbf * R2346 * 0.56) / 3500;
/* Translate baseband BW to register settings. */
if (ceil_bbbw_mhz <= 3) {
reg1db = 0xe0;
} else if ((ceil_bbbw_mhz > 3) && (ceil_bbbw_mhz <= 10)) {
reg1db = 0x60;
} else if (ceil_bbbw_mhz > 10) {
reg1db = 0x20;
} else {
throw uhd::runtime_error("[ad9361_device_t] CalRxTias: INVALID_CODE_PATH bad bbbw_mhz");
}
if (CTIA_fF > 2920) {
reg1dc = 0x40;
reg1de = 0x40;
uint8_t temp = (uint8_t) std::min(127,
uint8_t(std::floor(0.5 + ((CTIA_fF - 400.0) / 320.0))));
reg1dd = temp;
reg1df = temp;
} else {
uint8_t temp = uint8_t(std::floor(0.5 + ((CTIA_fF - 400.0) / 40.0)) + 0x40);
reg1dc = temp;
reg1de = temp;
reg1dd = 0;
reg1df = 0;
}
/* w00t. Settings calculated. Program them and roll out. */
_io_iface->poke8(0x1db, reg1db);
_io_iface->poke8(0x1dd, reg1dd);
_io_iface->poke8(0x1df, reg1df);
_io_iface->poke8(0x1dc, reg1dc);
_io_iface->poke8(0x1de, reg1de);
return bbbw;
}
/* Setup the AD9361 ADC.
*
* There are 40 registers that control the ADC's operation, most of the
* values of which must be derived mathematically, dependent on the current
* setting of the BBPLL. Note that the order of calculation is critical, as
* some of the 40 registers depend on the values in others. */
void ad9361_device_t::_setup_adc()
{
double bbbw_mhz = (((_bbpll_freq / 1e6) / _rx_bbf_tunediv) * M_LN2) \
/ (1.4 * 2 * M_PI);
/* For calibration, baseband BW is half the complex BW, and must be
* between 28e6 and 0.2e6. */
if(bbbw_mhz > 28) {
bbbw_mhz = 28;
} else if (bbbw_mhz < 0.20) {
bbbw_mhz = 0.20;
}
uint8_t rxbbf_c3_msb = _io_iface->peek8(0x1eb) & 0x3F;
uint8_t rxbbf_c3_lsb = _io_iface->peek8(0x1ec) & 0x7F;
uint8_t rxbbf_r2346 = _io_iface->peek8(0x1e6) & 0x07;
double fsadc = _adcclock_freq / 1e6;
/* Sort out the RC time constant for our baseband bandwidth... */
double rc_timeconst = 0.0;
if(bbbw_mhz < 18) {
rc_timeconst = (1 / ((1.4 * 2 * M_PI) \
* (18300 * rxbbf_r2346)
* ((160e-15 * rxbbf_c3_msb)
+ (10e-15 * rxbbf_c3_lsb) + 140e-15)
* (bbbw_mhz * 1e6)));
} else {
rc_timeconst = (1 / ((1.4 * 2 * M_PI) \
* (18300 * rxbbf_r2346)
* ((160e-15 * rxbbf_c3_msb)
+ (10e-15 * rxbbf_c3_lsb) + 140e-15)
* (bbbw_mhz * 1e6) * (1 + (0.01 * (bbbw_mhz - 18)))));
}
double scale_res = sqrt(1 / rc_timeconst);
double scale_cap = sqrt(1 / rc_timeconst);
double scale_snr = (_adcclock_freq < 80e6) ? 1.0 : 1.584893192;
double maxsnr = 640 / 160;
/* Calculate the values for all 40 settings registers.
*
* DO NOT TOUCH THIS UNLESS YOU KNOW EXACTLY WHAT YOU ARE DOING. kthx.*/
uint8_t data[40];
data[0] = 0; data[1] = 0; data[2] = 0; data[3] = 0x24;
data[4] = 0x24; data[5] = 0; data[6] = 0;
data[7] = std::min(124, uint8_t(std::floor(-0.5
+ (80.0 * scale_snr * scale_res
* std::min(1.0, sqrt(maxsnr * fsadc / 640.0))))));
double data007 = data[7];
data[8] = std::min(255, uint8_t(std::floor(0.5
+ ((20.0 * (640.0 / fsadc) * ((data007 / 80.0))
/ (scale_res * scale_cap))))));
data[10] = std::min(127, uint8_t(std::floor(-0.5 + (77.0 * scale_res
* std::min(1.0, sqrt(maxsnr * fsadc / 640.0))))));
double data010 = data[10];
data[9] = std::min(127, uint8_t(std::floor(0.8 * data010)));
data[11] = std::min(255, uint8_t(std::floor(0.5
+ (20.0 * (640.0 / fsadc) * ((data010 / 77.0)
/ (scale_res * scale_cap))))));
data[12] = std::min(127, uint8_t(std::floor(-0.5
+ (80.0 * scale_res * std::min(1.0,
sqrt(maxsnr * fsadc / 640.0))))));
double data012 = data[12];
data[13] = std::min(255, uint8_t(std::floor(-1.5
+ (20.0 * (640.0 / fsadc) * ((data012 / 80.0)
/ (scale_res * scale_cap))))));
data[14] = 21 * uint8_t(std::floor(0.1 * 640.0 / fsadc));
data[15] = std::min(127, uint8_t(1.025 * data007));
double data015 = data[15];
data[16] = std::min(127, uint8_t(std::floor((data015
* (0.98 + (0.02 * std::max(1.0,
(640.0 / fsadc) / maxsnr)))))));
data[17] = data[15];
data[18] = std::min(127, uint8_t(0.975 * (data010)));
double data018 = data[18];
data[19] = std::min(127, uint8_t(std::floor((data018
* (0.98 + (0.02 * std::max(1.0,
(640.0 / fsadc) / maxsnr)))))));
data[20] = data[18];
data[21] = std::min(127, uint8_t(0.975 * data012));
double data021 = data[21];
data[22] = std::min(127, uint8_t(std::floor((data021
* (0.98 + (0.02 * std::max(1.0,
(640.0 / fsadc) / maxsnr)))))));
data[23] = data[21];
data[24] = 0x2e;
data[25] = uint8_t(std::floor(128.0 + std::min(63.0,
63.0 * (fsadc / 640.0))));
data[26] = uint8_t(std::floor(std::min(63.0, 63.0 * (fsadc / 640.0)
* (0.92 + (0.08 * (640.0 / fsadc))))));
data[27] = uint8_t(std::floor(std::min(63.0,
32.0 * sqrt(fsadc / 640.0))));
data[28] = uint8_t(std::floor(128.0 + std::min(63.0,
63.0 * (fsadc / 640.0))));
data[29] = uint8_t(std::floor(std::min(63.0,
63.0 * (fsadc / 640.0)
* (0.92 + (0.08 * (640.0 / fsadc))))));
data[30] = uint8_t(std::floor(std::min(63.0,
32.0 * sqrt(fsadc / 640.0))));
data[31] = uint8_t(std::floor(128.0 + std::min(63.0,
63.0 * (fsadc / 640.0))));
data[32] = uint8_t(std::floor(std::min(63.0,
63.0 * (fsadc / 640.0) * (0.92
+ (0.08 * (640.0 / fsadc))))));
data[33] = uint8_t(std::floor(std::min(63.0,
63.0 * sqrt(fsadc / 640.0))));
data[34] = std::min(127, uint8_t(std::floor(64.0
* sqrt(fsadc / 640.0))));
data[35] = 0x40;
data[36] = 0x40;
data[37] = 0x2c;
data[38] = 0x00;
data[39] = 0x00;
/* Program the registers! */
for(size_t i = 0; i < 40; i++) {
_io_iface->poke8(0x200+i, data[i]);
}
}
/* Calibrate the baseband DC offset.
* Disables tracking
*/
void ad9361_device_t::_calibrate_baseband_dc_offset()
{
_io_iface->poke8(0x18b, 0x83); //Reset RF DC tracking flag
_io_iface->poke8(0x193, 0x3f); // Calibration settings
_io_iface->poke8(0x190, 0x0f); // Set tracking coefficient
//write_ad9361_reg(device, 0x190, /*0x0f*//*0xDF*/0x80*1 | 0x40*1 | (16+8/*+4*/)); // Set tracking coefficient: don't *4 counter, do decim /4, increased gain shift
_io_iface->poke8(0x194, 0x01); // More calibration settings
/* Start that calibration, baby. */
size_t count = 0;
_io_iface->poke8(0x016, 0x01);
while (_io_iface->peek8(0x016) & 0x01) {
if (count > 100) {
throw uhd::runtime_error("[ad9361_device_t] Baseband DC Offset Calibration Failure");
break;
}
count++;
boost::this_thread::sleep(boost::posix_time::milliseconds(5));
}
}
/* Calibrate the RF DC offset.
* Disables tracking
*/
void ad9361_device_t::_calibrate_rf_dc_offset()
{
/* Some settings are frequency-dependent. */
if (_rx_freq < 4e9) {
_io_iface->poke8(0x186, 0x32); // RF DC Offset count
_io_iface->poke8(0x187, 0x24);
_io_iface->poke8(0x188, 0x05);
} else {
_io_iface->poke8(0x186, 0x28); // RF DC Offset count
_io_iface->poke8(0x187, 0x34);
_io_iface->poke8(0x188, 0x06);
}
_io_iface->poke8(0x185, 0x20); // RF DC Offset wait count
_io_iface->poke8(0x18b, 0x83); // Disable tracking
_io_iface->poke8(0x189, 0x30);
/* Run the calibration! */
size_t count = 0;
_io_iface->poke8(0x016, 0x02);
while (_io_iface->peek8(0x016) & 0x02) {
if (count > 200) {
throw uhd::runtime_error("[ad9361_device_t] RF DC Offset Calibration Failure");
break;
}
count++;
boost::this_thread::sleep(boost::posix_time::milliseconds(50));
}
_io_iface->poke8(0x18b, 0x8d); // Enable RF DC tracking
}
void ad9361_device_t::_configure_bb_dc_tracking()
{
if (_use_dc_offset_tracking)
_io_iface->poke8(0x18b, 0xad); // Enable BB tracking
else
_io_iface->poke8(0x18b, 0x8d); // Disable BB tracking
}
void ad9361_device_t::_configure_rx_iq_tracking()
{
if (_use_iq_balance_tracking)
_io_iface->poke8(0x169, 0xcf); // Enable Rx IQ tracking
else
_io_iface->poke8(0x169, 0xc0); // Disable Rx IQ tracking
}
/* Single shot Rx quadrature calibration
*
* Procedure documented in "AD9361 Calibration Guide". Prior to calibration,
* state should be set to ALERT, FDD, and Dual Synth Mode. Rx quadrature
* tracking will be disabled, so run before or instead of enabling Rx
* quadrature tracking.
*/
void ad9361_device_t::_calibrate_rx_quadrature()
{
/* Configure RX Quadrature calibration settings. */
_io_iface->poke8(0x168, 0x03); // Set tone level for cal
_io_iface->poke8(0x16e, 0x25); // RX Gain index to use for cal
_io_iface->poke8(0x16a, 0x75); // Set Kexp phase
_io_iface->poke8(0x16b, 0x95); // Set Kexp amplitude
_io_iface->poke8(0x057, 0x33); // Power down Tx mixer
_io_iface->poke8(0x169, 0xc0); // Disable tracking and free run mode
/* Place Tx LO within passband of Rx spectrum */
double current_tx_freq = _tx_freq;
_tune_helper(TX, _rx_freq + _rx_bb_lp_bw / 2.0);
size_t count = 0;
_io_iface->poke8(0x016, 0x20);
while (_io_iface->peek8(0x016) & 0x20) {
if (count > 1000) {
throw uhd::runtime_error("[ad9361_device_t] Rx Quadrature Calibration Failure");
break;
}
count++;
boost::this_thread::sleep(boost::posix_time::milliseconds(5));
}
_io_iface->poke8(0x057, 0x30); // Re-enable Tx mixers
_tune_helper(TX, current_tx_freq);
}
/* TX quadrature calibration routine.
*
* The TX quadrature needs to be done twice, once for each TX chain, with
* only one register change in between. Thus, this function enacts the
* calibrations, and it is called from calibrate_tx_quadrature. */
void ad9361_device_t::_tx_quadrature_cal_routine() {
/* This is a weird process, but here is how it works:
* 1) Read the calibrated NCO frequency bits out of 0A3.
* 2) Write the two bits to the RX NCO freq part of 0A0.
* 3) Re-read 0A3 to get bits [5:0] because maybe they changed?
* 4) Update only the TX NCO freq bits in 0A3.
* 5) Profit (I hope). */
uint8_t reg0a3 = _io_iface->peek8(0x0a3);
uint8_t nco_freq = (reg0a3 & 0xC0);
_io_iface->poke8(0x0a0, 0x15 | (nco_freq >> 1));
reg0a3 = _io_iface->peek8(0x0a3);
_io_iface->poke8(0x0a3, (reg0a3 & 0x3F) | nco_freq);
/* It is possible to reach a configuration that won't operate correctly,
* where the two test tones used for quadrature calibration are outside
* of the RX BBF, and therefore don't make it to the ADC. We will check
* for that scenario here. */
double max_cal_freq = (((_baseband_bw * _tfir_factor)
* ((nco_freq >> 6) + 1)) / 32) * 2;
double bbbw = _baseband_bw / 2.0; // bbbw represents the one-sided BW
if (bbbw > 28e6) {
bbbw = 28e6;
} else if (bbbw < 0.20e6) {
bbbw = 0.20e6;
}
if (max_cal_freq > bbbw)
throw uhd::runtime_error("[ad9361_device_t] max_cal_freq > bbbw");
_io_iface->poke8(0x0a1, 0x7B); // Set tracking coefficient
_io_iface->poke8(0x0a9, 0xff); // Cal count
_io_iface->poke8(0x0a2, 0x7f); // Cal Kexp
_io_iface->poke8(0x0a5, 0x01); // Cal magnitude threshold VVVV
_io_iface->poke8(0x0a6, 0x01);
/* The gain table index used for calibration must be adjusted for the
* mid-table to get a TIA index = 1 and LPF index = 0. */
if (_rx_freq < 1300e6) {
_io_iface->poke8(0x0aa, 0x22); // Cal gain table index
} else {
_io_iface->poke8(0x0aa, 0x25); // Cal gain table index
}
_io_iface->poke8(0x0a4, 0xf0); // Cal setting conut
_io_iface->poke8(0x0ae, 0x00); // Cal LPF gain index (split mode)
/* Now, calibrate the TX quadrature! */
size_t count = 0;
_io_iface->poke8(0x016, 0x10);
while (_io_iface->peek8(0x016) & 0x10) {
if (count > 100) {
throw uhd::runtime_error("[ad9361_device_t] TX Quadrature Calibration Failure");
break;
}
count++;
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
}
}
/* Run the TX quadrature calibration.
*/
void ad9361_device_t::_calibrate_tx_quadrature()
{
/* Make sure we are, in fact, in the ALERT state. If not, something is
* terribly wrong in the driver execution flow. */
if ((_io_iface->peek8(0x017) & 0x0F) != 5) {
throw uhd::runtime_error("[ad9361_device_t] TX Quad Cal started, but not in ALERT");
}
/* Turn off free-running and continuous calibrations. Note that this
* will get turned back on at the end of the RX calibration routine. */
_io_iface->poke8(0x169, 0xc0);
/* This calibration must be done in a certain order, and for both TX_A
* and TX_B, separately. Store the original setting so that we can
* restore it later. */
uint8_t orig_reg_inputsel = _regs.inputsel;
/***********************************************************************
* TX1/2-A Calibration
**********************************************************************/
_regs.inputsel = _regs.inputsel & 0xBF;
_io_iface->poke8(0x004, _regs.inputsel);
_tx_quadrature_cal_routine();
/***********************************************************************
* TX1/2-B Calibration
**********************************************************************/
_regs.inputsel = _regs.inputsel | 0x40;
_io_iface->poke8(0x004, _regs.inputsel);
_tx_quadrature_cal_routine();
/***********************************************************************
* fin
**********************************************************************/
_regs.inputsel = orig_reg_inputsel;
_io_iface->poke8(0x004, orig_reg_inputsel);
}
/***********************************************************************
* Other Misc Setup Functions
***********************************************************************/
/* Program the mixer gain table.
*
* Note that this table is fixed for all frequency settings. */
void ad9361_device_t::_program_mixer_gm_subtable()
{
uint8_t gain[] = { 0x78, 0x74, 0x70, 0x6C, 0x68, 0x64, 0x60, 0x5C, 0x58,
0x54, 0x50, 0x4C, 0x48, 0x30, 0x18, 0x00 };
uint8_t gm[] = { 0x00, 0x0D, 0x15, 0x1B, 0x21, 0x25, 0x29, 0x2C, 0x2F, 0x31,
0x33, 0x34, 0x35, 0x3A, 0x3D, 0x3E };
/* Start the clock. */
_io_iface->poke8(0x13f, 0x02);
/* Program the GM Sub-table. */
int i;
for (i = 15; i >= 0; i--) {
_io_iface->poke8(0x138, i);
_io_iface->poke8(0x139, gain[(15 - i)]);
_io_iface->poke8(0x13A, 0x00);
_io_iface->poke8(0x13B, gm[(15 - i)]);
_io_iface->poke8(0x13F, 0x06);
_io_iface->poke8(0x13C, 0x00);
_io_iface->poke8(0x13C, 0x00);
}
/* Clear write bit and stop clock. */
_io_iface->poke8(0x13f, 0x02);
_io_iface->poke8(0x13C, 0x00);
_io_iface->poke8(0x13C, 0x00);
_io_iface->poke8(0x13f, 0x00);
}
/* Program the gain table.
*
* There are three different gain tables for different frequency ranges! */
void ad9361_device_t::_program_gain_table() {
/* Figure out which gain table we should be using for our current
* frequency band. */
uint8_t (*gain_table)[3] = NULL;
uint8_t new_gain_table;
if (_rx_freq < 1300e6) {
gain_table = gain_table_sub_1300mhz;
new_gain_table = 1;
} else if (_rx_freq < 4e9) {
gain_table = gain_table_1300mhz_to_4000mhz;
new_gain_table = 2;
} else if (_rx_freq <= 6e9) {
gain_table = gain_table_4000mhz_to_6000mhz;
new_gain_table = 3;
} else {
new_gain_table = 1;
throw uhd::runtime_error("[ad9361_device_t] Wrong _rx_freq value");
}
/* Only re-program the gain table if there has been a band change. */
if (_curr_gain_table == new_gain_table) {
return;
} else {
_curr_gain_table = new_gain_table;
}
/* Okay, we have to program a new gain table. Sucks, brah. Start the
* gain table clock. */
_io_iface->poke8(0x137, 0x1A);
/* IT'S PROGRAMMING TIME. */
uint8_t index = 0;
for (; index < 77; index++) {
_io_iface->poke8(0x130, index);
_io_iface->poke8(0x131, gain_table[index][0]);
_io_iface->poke8(0x132, gain_table[index][1]);
_io_iface->poke8(0x133, gain_table[index][2]);
_io_iface->poke8(0x137, 0x1E);
_io_iface->poke8(0x134, 0x00);
_io_iface->poke8(0x134, 0x00);
}
/* Everything above the 77th index is zero. */
for (; index < 91; index++) {
_io_iface->poke8(0x130, index);
_io_iface->poke8(0x131, 0x00);
_io_iface->poke8(0x132, 0x00);
_io_iface->poke8(0x133, 0x00);
_io_iface->poke8(0x137, 0x1E);
_io_iface->poke8(0x134, 0x00);
_io_iface->poke8(0x134, 0x00);
}
/* Clear the write bit and stop the gain clock. */
_io_iface->poke8(0x137, 0x1A);
_io_iface->poke8(0x134, 0x00);
_io_iface->poke8(0x134, 0x00);
_io_iface->poke8(0x137, 0x00);
}
/* Setup gain control registers.
*
* This really only needs to be done once, at initialization.
* If AGC is used the mode select bits (Reg 0x0FA) must be written manually */
void ad9361_device_t::_setup_gain_control(bool agc)
{
/* The AGC mode configuration should be good for all cases.
* However, non AGC configuration still used for backward compatibility. */
if (agc) {
/*mode select bits must be written before hand!*/
_io_iface->poke8(0x0FB, 0x08); // Table, Digital Gain, Man Gain Ctrl
_io_iface->poke8(0x0FC, 0x23); // Incr Step Size, ADC Overrange Size
_io_iface->poke8(0x0FD, 0x4C); // Max Full/LMT Gain Table Index
_io_iface->poke8(0x0FE, 0x44); // Decr Step Size, Peak Overload Time
_io_iface->poke8(0x100, 0x6F); // Max Digital Gain
_io_iface->poke8(0x101, 0x0A); // Max Digital Gain
_io_iface->poke8(0x103, 0x08); // Max Digital Gain
_io_iface->poke8(0x104, 0x2F); // ADC Small Overload Threshold
_io_iface->poke8(0x105, 0x3A); // ADC Large Overload Threshold
_io_iface->poke8(0x106, 0x22); // Max Digital Gain
_io_iface->poke8(0x107, 0x2B); // Large LMT Overload Threshold
_io_iface->poke8(0x108, 0x31);
_io_iface->poke8(0x111, 0x0A);
_io_iface->poke8(0x11A, 0x1C);
_io_iface->poke8(0x120, 0x0C);
_io_iface->poke8(0x121, 0x44);
_io_iface->poke8(0x122, 0x44);
_io_iface->poke8(0x123, 0x11);
_io_iface->poke8(0x124, 0xF5);
_io_iface->poke8(0x125, 0x3B);
_io_iface->poke8(0x128, 0x03);
_io_iface->poke8(0x129, 0x56);
_io_iface->poke8(0x12A, 0x22);
} else {
_io_iface->poke8(0x0FA, 0xE0); // Gain Control Mode Select
_io_iface->poke8(0x0FB, 0x08); // Table, Digital Gain, Man Gain Ctrl
_io_iface->poke8(0x0FC, 0x23); // Incr Step Size, ADC Overrange Size
_io_iface->poke8(0x0FD, 0x4C); // Max Full/LMT Gain Table Index
_io_iface->poke8(0x0FE, 0x44); // Decr Step Size, Peak Overload Time
_io_iface->poke8(0x100, 0x6F); // Max Digital Gain
_io_iface->poke8(0x104, 0x2F); // ADC Small Overload Threshold
_io_iface->poke8(0x105, 0x3A); // ADC Large Overload Threshold
_io_iface->poke8(0x107, 0x31); // Large LMT Overload Threshold
_io_iface->poke8(0x108, 0x39); // Small LMT Overload Threshold
_io_iface->poke8(0x109, 0x23); // Rx1 Full/LMT Gain Index
_io_iface->poke8(0x10A, 0x58); // Rx1 LPF Gain Index
_io_iface->poke8(0x10B, 0x00); // Rx1 Digital Gain Index
_io_iface->poke8(0x10C, 0x23); // Rx2 Full/LMT Gain Index
_io_iface->poke8(0x10D, 0x18); // Rx2 LPF Gain Index
_io_iface->poke8(0x10E, 0x00); // Rx2 Digital Gain Index
_io_iface->poke8(0x114, 0x30); // Low Power Threshold
_io_iface->poke8(0x11A, 0x27); // Initial LMT Gain Limit
_io_iface->poke8(0x081, 0x00); // Tx Symbol Gain Control
}
}
/* Setup the RX or TX synthesizers.
*
* This setup depends on a fixed look-up table, which is stored in an
* included header file. The table is indexed based on the passed VCO rate.
*/
void ad9361_device_t::_setup_synth(direction_t direction, double vcorate)
{
/* The vcorates in the vco_index array represent lower boundaries for
* rates. Once we find a match, we use that index to look-up the rest of
* the register values in the LUT. */
int vcoindex = 0;
for (size_t i = 0; i < 53; i++) {
vcoindex = i;
if (vcorate > vco_index[i]) {
break;
}
}
if (vcoindex > 53)
throw uhd::runtime_error("[ad9361_device_t] vcoindex > 53");
/* Parse the values out of the LUT based on our calculated index... */
uint8_t vco_output_level = synth_cal_lut[vcoindex][0];
uint8_t vco_varactor = synth_cal_lut[vcoindex][1];
uint8_t vco_bias_ref = synth_cal_lut[vcoindex][2];
uint8_t vco_bias_tcf = synth_cal_lut[vcoindex][3];
uint8_t vco_cal_offset = synth_cal_lut[vcoindex][4];
uint8_t vco_varactor_ref = synth_cal_lut[vcoindex][5];
uint8_t charge_pump_curr = synth_cal_lut[vcoindex][6];
uint8_t loop_filter_c2 = synth_cal_lut[vcoindex][7];
uint8_t loop_filter_c1 = synth_cal_lut[vcoindex][8];
uint8_t loop_filter_r1 = synth_cal_lut[vcoindex][9];
uint8_t loop_filter_c3 = synth_cal_lut[vcoindex][10];
uint8_t loop_filter_r3 = synth_cal_lut[vcoindex][11];
/* ... annnd program! */
if (direction == RX) {
_io_iface->poke8(0x23a, 0x40 | vco_output_level);
_io_iface->poke8(0x239, 0xC0 | vco_varactor);
_io_iface->poke8(0x242, vco_bias_ref | (vco_bias_tcf << 3));
_io_iface->poke8(0x238, (vco_cal_offset << 3));
_io_iface->poke8(0x245, 0x00);
_io_iface->poke8(0x251, vco_varactor_ref);
_io_iface->poke8(0x250, 0x70);
_io_iface->poke8(0x23b, 0x80 | charge_pump_curr);
_io_iface->poke8(0x23e, loop_filter_c1 | (loop_filter_c2 << 4));
_io_iface->poke8(0x23f, loop_filter_c3 | (loop_filter_r1 << 4));
_io_iface->poke8(0x240, loop_filter_r3);
} else if (direction == TX) {
_io_iface->poke8(0x27a, 0x40 | vco_output_level);
_io_iface->poke8(0x279, 0xC0 | vco_varactor);
_io_iface->poke8(0x282, vco_bias_ref | (vco_bias_tcf << 3));
_io_iface->poke8(0x278, (vco_cal_offset << 3));
_io_iface->poke8(0x285, 0x00);
_io_iface->poke8(0x291, vco_varactor_ref);
_io_iface->poke8(0x290, 0x70);
_io_iface->poke8(0x27b, 0x80 | charge_pump_curr);
_io_iface->poke8(0x27e, loop_filter_c1 | (loop_filter_c2 << 4));
_io_iface->poke8(0x27f, loop_filter_c3 | (loop_filter_r1 << 4));
_io_iface->poke8(0x280, loop_filter_r3);
} else {
throw uhd::runtime_error("[ad9361_device_t] [_setup_synth] INVALID_CODE_PATH");
}
}
/* Tune the baseband VCO.
*
* This clock signal is what gets fed to the ADCs and DACs. This function is
* not exported outside of this file, and is invoked based on the rate
* fed to the public set_clock_rate function. */
double ad9361_device_t::_tune_bbvco(const double rate)
{
UHD_LOGGER_TRACE("AD936X")<< boost::format("[ad9361_device_t::_tune_bbvco] rate=%.10f\n") % rate;
/* Let's not re-tune to the same frequency over and over... */
if (freq_is_nearly_equal(rate, _req_coreclk)) {
return _adcclock_freq;
}
_req_coreclk = rate;
const double fref = 40e6;
const int modulus = 2088960;
const double vcomax = 1430e6;
const double vcomin = 672e6;
double vcorate;
int vcodiv;
/* Iterate over VCO dividers until appropriate divider is found. */
int i = 1;
for (; i <= 6; i++) {
vcodiv = 1 << i;
vcorate = rate * vcodiv;
if (vcorate >= vcomin && vcorate <= vcomax)
break;
}
if (i == 7)
throw uhd::runtime_error("[ad9361_device_t] _tune_bbvco: wrong vcorate");
UHD_LOGGER_TRACE("AD936X")<< boost::format("[ad9361_device_t::_tune_bbvco] vcodiv=%d vcorate=%.10f\n") % vcodiv % vcorate;
/* Fo = Fref * (Nint + Nfrac / mod) */
int nint = static_cast(vcorate / fref);
UHD_LOGGER_TRACE("AD936X")<< boost::format("[ad9361_device_t::_tune_bbvco] (nint)=%.10f\n") % (vcorate / fref);
int nfrac = static_cast(boost::math::round(((vcorate / fref) - (double) nint) * (double) modulus));
UHD_LOGGER_TRACE("AD936X")<< boost::format("[ad9361_device_t::_tune_bbvco] (nfrac)=%.10f\n") % (((vcorate / fref) - (double) nint) * (double) modulus);
UHD_LOGGER_TRACE("AD936X")<< boost::format("[ad9361_device_t::_tune_bbvco] nint=%d nfrac=%d\n") % nint % nfrac;
double actual_vcorate = fref
* ((double) nint + ((double) nfrac / (double) modulus));
/* Scale CP current according to VCO rate */
const double icp_baseline = 150e-6;
const double freq_baseline = 1280e6;
double icp = icp_baseline * (actual_vcorate / freq_baseline);
int icp_reg = static_cast(icp / 25e-6) - 1;
_io_iface->poke8(0x045, 0x00); // REFCLK / 1 to BBPLL
_io_iface->poke8(0x046, icp_reg & 0x3F); // CP current
_io_iface->poke8(0x048, 0xe8); // BBPLL loop filters
_io_iface->poke8(0x049, 0x5b); // BBPLL loop filters
_io_iface->poke8(0x04a, 0x35); // BBPLL loop filters
_io_iface->poke8(0x04b, 0xe0);
_io_iface->poke8(0x04e, 0x10); // Max accuracy
_io_iface->poke8(0x043, nfrac & 0xFF); // Nfrac[7:0]
_io_iface->poke8(0x042, (nfrac >> 8) & 0xFF); // Nfrac[15:8]
_io_iface->poke8(0x041, (nfrac >> 16) & 0xFF); // Nfrac[23:16]
_io_iface->poke8(0x044, nint); // Nint
_calibrate_lock_bbpll();
_regs.bbpll = (_regs.bbpll & 0xF8) | i;
_bbpll_freq = actual_vcorate;
_adcclock_freq = (actual_vcorate / vcodiv);
return _adcclock_freq;
}
/* This function re-programs all of the gains in the system.
*
* Because the gain values match to different gain indices based on the
* current operating band, this function can be called to update all gain
* settings to the appropriate index after a re-tune. */
void ad9361_device_t::_reprogram_gains()
{
set_gain(RX, CHAIN_1,_rx1_gain);
set_gain(RX, CHAIN_2,_rx2_gain);
set_gain(TX, CHAIN_1,_tx1_gain);
set_gain(TX, CHAIN_2,_tx2_gain);
}
/* This is the internal tune function, not available for a host call.
*
* Calculate the VCO settings for the requested frquency, and then either
* tune the RX or TX VCO. */
double ad9361_device_t::_tune_helper(direction_t direction, const double value)
{
/* The RFPLL runs from 6 GHz - 12 GHz */
const double fref = 80e6;
const int modulus = 8388593;
const double vcomax = 12e9;
const double vcomin = 6e9;
double vcorate;
int vcodiv;
/* Iterate over VCO dividers until appropriate divider is found. */
int i;
for (i = 0; i <= 6; i++) {
vcodiv = 2 << i;
vcorate = value * vcodiv;
if (vcorate >= vcomin && vcorate <= vcomax)
break;
}
if (i == 7)
throw uhd::runtime_error("[ad9361_device_t] RFVCO can't find valid VCO rate!");
int nint = static_cast(vcorate / fref);
int nfrac = static_cast(((vcorate / fref) - nint) * modulus);
double actual_vcorate = fref * (nint + (double) (nfrac) / modulus);
double actual_lo = actual_vcorate / vcodiv;
if (direction == RX) {
_req_rx_freq = value;
/* Set band-specific settings. */
if (value < _client_params->get_band_edge(AD9361_RX_BAND0)) {
_regs.inputsel = (_regs.inputsel & 0xC0) | 0x30; // Port C, balanced
} else if ((value
>= _client_params->get_band_edge(AD9361_RX_BAND0))
&& (value
< _client_params->get_band_edge(AD9361_RX_BAND1))) {
_regs.inputsel = (_regs.inputsel & 0xC0) | 0x0C; // Port B, balanced
} else if ((value
>= _client_params->get_band_edge(AD9361_RX_BAND1))
&& (value <= 6e9)) {
_regs.inputsel = (_regs.inputsel & 0xC0) | 0x03; // Port A, balanced
} else {
throw uhd::runtime_error("[ad9361_device_t] [_tune_helper] INVALID_CODE_PATH");
}
_io_iface->poke8(0x004, _regs.inputsel);
/* Store vcodiv setting. */
_regs.vcodivs = (_regs.vcodivs & 0xF0) | (i & 0x0F);
/* Setup the synthesizer. */
_setup_synth(RX, actual_vcorate);
/* Tune!!!! */
_io_iface->poke8(0x233, nfrac & 0xFF);
_io_iface->poke8(0x234, (nfrac >> 8) & 0xFF);
_io_iface->poke8(0x235, (nfrac >> 16) & 0xFF);
_io_iface->poke8(0x232, (nint >> 8) & 0xFF);
_io_iface->poke8(0x231, nint & 0xFF);
_io_iface->poke8(0x005, _regs.vcodivs);
/* Lock the PLL! */
boost::this_thread::sleep(boost::posix_time::milliseconds(2));
if ((_io_iface->peek8(0x247) & 0x02) == 0) {
throw uhd::runtime_error("[ad9361_device_t] RX PLL NOT LOCKED");
}
_rx_freq = actual_lo;
return actual_lo;
} else {
_req_tx_freq = value;
/* Set band-specific settings. */
if (value < _client_params->get_band_edge(AD9361_TX_BAND0)) {
_regs.inputsel = _regs.inputsel | 0x40;
} else if ((value
>= _client_params->get_band_edge(AD9361_TX_BAND0))
&& (value <= 6e9)) {
_regs.inputsel = _regs.inputsel & 0xBF;
} else {
throw uhd::runtime_error("[ad9361_device_t] [_tune_helper] INVALID_CODE_PATH");
}
_io_iface->poke8(0x004, _regs.inputsel);
/* Store vcodiv setting. */
_regs.vcodivs = (_regs.vcodivs & 0x0F) | ((i & 0x0F) << 4);
/* Setup the synthesizer. */
_setup_synth(TX, actual_vcorate);
/* Tune it, homey. */
_io_iface->poke8(0x273, nfrac & 0xFF);
_io_iface->poke8(0x274, (nfrac >> 8) & 0xFF);
_io_iface->poke8(0x275, (nfrac >> 16) & 0xFF);
_io_iface->poke8(0x272, (nint >> 8) & 0xFF);
_io_iface->poke8(0x271, nint & 0xFF);
_io_iface->poke8(0x005, _regs.vcodivs);
/* Lock the PLL! */
boost::this_thread::sleep(boost::posix_time::milliseconds(2));
if ((_io_iface->peek8(0x287) & 0x02) == 0) {
throw uhd::runtime_error("[ad9361_device_t] TX PLL NOT LOCKED");
}
_tx_freq = actual_lo;
return actual_lo;
}
}
/* Configure the various clock / sample rates in the RX and TX chains.
*
* Functionally, this function configures AD9361's RX and TX rates. For
* a requested TX & RX rate, it sets the interpolation & decimation filters,
* and tunes the VCO that feeds the ADCs and DACs.
*/
double ad9361_device_t::_setup_rates(const double rate)
{
/* If we make it into this function, then we are tuning to a new rate.
* Store the new rate. */
_req_clock_rate = rate;
UHD_LOGGER_TRACE("AD936X")<< boost::format("[ad9361_device_t::_setup_rates] rate=%.6d\n") % rate;
/* Set the decimation and interpolation values in the RX and TX chains.
* This also switches filters in / out. Note that all transmitters and
* receivers have to be turned on for the calibration portion of
* bring-up, and then they will be switched out to reflect the actual
* user-requested antenna selections. */
int divfactor = 0;
_tfir_factor = 0;
_rfir_factor = 0;
if (rate < 0.33e6) {
// RX1 + RX2 enabled, 3, 2, 2, 4
_regs.rxfilt = B8(11101111);
// TX1 + TX2 enabled, 3, 2, 2, 4
_regs.txfilt = B8(11101111);
divfactor = 48;
_tfir_factor = 4;
_rfir_factor = 4;
} else if (rate < 0.66e6) {
// RX1 + RX2 enabled, 2, 2, 2, 4
_regs.rxfilt = B8(11011111);
// TX1 + TX2 enabled, 2, 2, 2, 4
_regs.txfilt = B8(11011111);
divfactor = 32;
_tfir_factor = 4;
_rfir_factor = 4;
} else if (rate <= 20e6) {
// RX1 + RX2 enabled, 2, 2, 2, 2
_regs.rxfilt = B8(11011110);
// TX1 + TX2 enabled, 2, 2, 2, 2
_regs.txfilt = B8(11011110);
divfactor = 16;
_tfir_factor = 2;
_rfir_factor = 2;
} else if ((rate > 20e6) && (rate < 23e6)) {
// RX1 + RX2 enabled, 3, 2, 2, 2
_regs.rxfilt = B8(11101110);
// TX1 + TX2 enabled, 3, 1, 2, 2
_regs.txfilt = B8(11100110);
divfactor = 24;
_tfir_factor = 2;
_rfir_factor = 2;
} else if ((rate >= 23e6) && (rate < 41e6)) {
// RX1 + RX2 enabled, 2, 2, 2, 2
_regs.rxfilt = B8(11011110);
// TX1 + TX2 enabled, 1, 2, 2, 2
_regs.txfilt = B8(11001110);
divfactor = 16;
_tfir_factor = 2;
_rfir_factor = 2;
} else if ((rate >= 41e6) && (rate <= 58e6)) {
// RX1 + RX2 enabled, 3, 1, 2, 2
_regs.rxfilt = B8(11100110);
// TX1 + TX2 enabled, 3, 1, 1, 2
_regs.txfilt = B8(11100010);
divfactor = 12;
_tfir_factor = 2;
_rfir_factor = 2;
} else if ((rate > 58e6) && (rate <= 61.44e6)) {
// RX1 + RX2 enabled, 2, 1, 2, 2
_regs.rxfilt = B8(11010110);
// TX1 + TX2 enabled, 2, 1, 1, 2
_regs.txfilt = B8(11010010);
divfactor = 8;
_tfir_factor = 2;
_rfir_factor = 2;
} else {
// should never get in here
throw uhd::runtime_error("[ad9361_device_t] [_setup_rates] INVALID_CODE_PATH");
}
UHD_LOGGER_TRACE("AD936X")<< boost::format("[ad9361_device_t::_setup_rates] divfactor=%d\n") % divfactor;
/* Tune the BBPLL to get the ADC and DAC clocks. */
const double adcclk = _tune_bbvco(rate * divfactor);
double dacclk = adcclk;
/* The DAC clock must be <= 336e6, and is either the ADC clock or 1/2 the
* ADC clock.*/
if (adcclk > 336e6) {
/* Make the DAC clock = ADC/2 */
_regs.bbpll = _regs.bbpll | 0x08;
dacclk = adcclk / 2.0;
} else {
_regs.bbpll = _regs.bbpll & 0xF7;
}
/* Set the dividers / interpolators in AD9361. */
_io_iface->poke8(0x002, _regs.txfilt);
_io_iface->poke8(0x003, _regs.rxfilt);
_io_iface->poke8(0x004, _regs.inputsel);
_io_iface->poke8(0x00A, _regs.bbpll);
UHD_LOGGER_TRACE("AD936X")<< boost::format("[ad9361_device_t::_setup_rates] adcclk=%f\n") % adcclk;
_baseband_bw = (adcclk / divfactor);
/*
The Tx & Rx FIR calculate 16 taps per clock cycle. This limits the number of available taps to the ratio of DAC_CLK/ADC_CLK
to the input data rate multiplied by 16. For example, if the input data rate is 25 MHz and DAC_CLK is 100 MHz,
then the ratio of DAC_CLK to the input data rate is 100/25 or 4. In this scenario, the total number of taps available is 64.
Also, whilst the Rx FIR filter always has memory available for 128 taps, the Tx FIR Filter can only support a maximum length of 64 taps
in 1x interpolation mode, and 128 taps in 2x & 4x modes.
*/
const size_t max_tx_taps = std::min(
std::min((16 * (int)((dacclk / rate) + 0.5)), 128),
(_tfir_factor == 1) ? 64 : 128);
const size_t max_rx_taps = std::min((16 * (size_t)((adcclk / rate) + 0.5)),
128);
const size_t num_tx_taps = get_num_taps(max_tx_taps);
const size_t num_rx_taps = get_num_taps(max_rx_taps);
_setup_tx_fir(num_tx_taps,_tfir_factor);
_setup_rx_fir(num_rx_taps,_rfir_factor);
return _baseband_bw;
}
/***********************************************************************
* Publicly exported functions to host calls
**********************************************************************/
void ad9361_device_t::initialize()
{
boost::lock_guard lock(_mutex);
/* Initialize shadow registers. */
_regs.vcodivs = 0x00;
_regs.inputsel = 0x30;
_regs.rxfilt = 0x00;
_regs.txfilt = 0x00;
_regs.bbpll = 0x02;
_regs.bbftune_config = 0x1e;
_regs.bbftune_mode = 0x1e;
/* Initialize private VRQ fields. */
_rx_freq = DEFAULT_RX_FREQ;
_tx_freq = DEFAULT_TX_FREQ;
_req_rx_freq = 0.0;
_req_tx_freq = 0.0;
_baseband_bw = 0.0;
_req_clock_rate = 0.0;
_req_coreclk = 0.0;
_bbpll_freq = 0.0;
_adcclock_freq = 0.0;
_rx_bbf_tunediv = 0;
_curr_gain_table = 0;
_rx1_gain = 0;
_rx2_gain = 0;
_tx1_gain = 0;
_tx2_gain = 0;
_use_dc_offset_tracking = true;
_use_iq_balance_tracking = true;
_rx1_agc_mode = GAIN_MODE_SLOW_AGC;
_rx2_agc_mode = GAIN_MODE_SLOW_AGC;
_rx1_agc_enable = false;
_rx2_agc_enable = false;
_rx_analog_bw = 0;
_tx_analog_bw = 0;
_rx_tia_lp_bw = 0;
_tx_sec_lp_bw = 0;
_rx_bb_lp_bw = 0;
_tx_bb_lp_bw = 0;
/* Reset the device. */
_io_iface->poke8(0x000, 0x01);
_io_iface->poke8(0x000, 0x00);
boost::this_thread::sleep(boost::posix_time::milliseconds(20));
/* Check device ID to make sure iface works */
uint32_t device_id = (_io_iface->peek8(0x037) & 0x8);
if (device_id != 0x8) {
throw uhd::runtime_error(str(boost::format("[ad9361_device_t::initialize] Device ID readback failure. Expected: 0x8, Received: 0x%x") % device_id));
}
/* There is not a WAT big enough for this. */
_io_iface->poke8(0x3df, 0x01);
_io_iface->poke8(0x2a6, 0x0e); // Enable master bias
_io_iface->poke8(0x2a8, 0x0e); // Set bandgap trim
/* Set RFPLL ref clock scale to REFCLK * 2 */
_io_iface->poke8(0x2ab, 0x07);
_io_iface->poke8(0x2ac, 0xff);
/* Enable clocks. */
switch (_client_params->get_clocking_mode()) {
case clocking_mode_t::AD9361_XTAL_N_CLK_PATH: {
_io_iface->poke8(0x009, 0x17);
} break;
case clocking_mode_t::AD9361_XTAL_P_CLK_PATH: {
_io_iface->poke8(0x009, 0x07);
_io_iface->poke8(0x292, 0x08);
_io_iface->poke8(0x293, 0x80);
_io_iface->poke8(0x294, 0x00);
_io_iface->poke8(0x295, 0x14);
} break;
default:
throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
}
boost::this_thread::sleep(boost::posix_time::milliseconds(20));
/* Tune the BBPLL, write TX and RX FIRS. */
_setup_rates(50e6);
/* Setup data ports (FDD dual port DDR):
* FDD dual port DDR CMOS no swap.
* Force TX on one port, RX on the other. */
switch (_client_params->get_digital_interface_mode()) {
case AD9361_DDR_FDD_LVCMOS: {
_io_iface->poke8(0x010, 0xc8); // Swap I&Q on Tx, Swap I&Q on Rx, Toggle frame sync mode
_io_iface->poke8(0x011, 0x00);
_io_iface->poke8(0x012, 0x02);
} break;
case AD9361_DDR_FDD_LVDS: {
_io_iface->poke8(0x010, 0xcc); // Swap I&Q on Tx, Swap I&Q on Rx, Toggle frame sync mode, 2R2T timing.
_io_iface->poke8(0x011, 0x00);
_io_iface->poke8(0x012, 0x10);
//LVDS Specific
_io_iface->poke8(0x03C, 0x23);
_io_iface->poke8(0x03D, 0xFF);
_io_iface->poke8(0x03E, 0x0F);
} break;
default:
throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
}
/* Data delay for TX and RX data clocks */
digital_interface_delays_t timing =
_client_params->get_digital_interface_timing();
uint8_t rx_delays = ((timing.rx_clk_delay & 0xF) << 4)
| (timing.rx_data_delay & 0xF);
uint8_t tx_delays = ((timing.tx_clk_delay & 0xF) << 4)
| (timing.tx_data_delay & 0xF);
_io_iface->poke8(0x006, rx_delays);
_io_iface->poke8(0x007, tx_delays);
/* Setup AuxDAC */
_io_iface->poke8(0x018, 0x00); // AuxDAC1 Word[9:2]
_io_iface->poke8(0x019, 0x00); // AuxDAC2 Word[9:2]
_io_iface->poke8(0x01A, 0x00); // AuxDAC1 Config and Word[1:0]
_io_iface->poke8(0x01B, 0x00); // AuxDAC2 Config and Word[1:0]
_io_iface->poke8(0x023, 0xFF); // AuxDAC Manaul/Auto Control
_io_iface->poke8(0x026, 0x00); // AuxDAC Manual Select Bit/GPO Manual Select
_io_iface->poke8(0x030, 0x00); // AuxDAC1 Rx Delay
_io_iface->poke8(0x031, 0x00); // AuxDAC1 Tx Delay
_io_iface->poke8(0x032, 0x00); // AuxDAC2 Rx Delay
_io_iface->poke8(0x033, 0x00); // AuxDAC2 Tx Delay
/* LNA bypass polarity inversion
* According to the register map, we should invert the bypass path to
* match LNA phase. Extensive testing, however, shows otherwise and that
* to align bypass and LNA phases, the bypass inversion switch should be
* turned off.
*/
_io_iface->poke8(0x022, 0x0A);
/* Setup AuxADC */
_io_iface->poke8(0x00B, 0x00); // Temp Sensor Setup (Offset)
_io_iface->poke8(0x00C, 0x00); // Temp Sensor Setup (Temp Window)
_io_iface->poke8(0x00D, 0x00); // Temp Sensor Setup (Manual Measure)
_io_iface->poke8(0x00F, 0x04); // Temp Sensor Setup (Decimation)
_io_iface->poke8(0x01C, 0x10); // AuxADC Setup (Clock Div)
_io_iface->poke8(0x01D, 0x01); // AuxADC Setup (Decimation/Enable)
/* Setup control outputs. */
_io_iface->poke8(0x035, 0x01);
_io_iface->poke8(0x036, 0xFF);
/* Setup GPO */
_io_iface->poke8(0x03a, 0x27); //set delay register
_io_iface->poke8(0x020, 0x00); // GPO Auto Enable Setup in RX and TX
_io_iface->poke8(0x027, 0x03); // GPO Manual and GPO auto value in ALERT
_io_iface->poke8(0x028, 0x00); // GPO_0 RX Delay
_io_iface->poke8(0x029, 0x00); // GPO_1 RX Delay
_io_iface->poke8(0x02A, 0x00); // GPO_2 RX Delay
_io_iface->poke8(0x02B, 0x00); // GPO_3 RX Delay
_io_iface->poke8(0x02C, 0x00); // GPO_0 TX Delay
_io_iface->poke8(0x02D, 0x00); // GPO_1 TX Delay
_io_iface->poke8(0x02E, 0x00); // GPO_2 TX Delay
_io_iface->poke8(0x02F, 0x00); // GPO_3 TX Delay
_io_iface->poke8(0x261, 0x00); // RX LO power
_io_iface->poke8(0x2a1, 0x00); // TX LO power
_io_iface->poke8(0x248, 0x0b); // en RX VCO LDO
_io_iface->poke8(0x288, 0x0b); // en TX VCO LDO
_io_iface->poke8(0x246, 0x02); // pd RX cal Tcf
_io_iface->poke8(0x286, 0x02); // pd TX cal Tcf
_io_iface->poke8(0x249, 0x8e); // rx vco cal length
_io_iface->poke8(0x289, 0x8e); // rx vco cal length
_io_iface->poke8(0x23b, 0x80); // set RX MSB?, FIXME 0x89 magic cp
_io_iface->poke8(0x27b, 0x80); // "" TX //FIXME 0x88 see above
_io_iface->poke8(0x243, 0x0d); // set rx prescaler bias
_io_iface->poke8(0x283, 0x0d); // "" TX
_io_iface->poke8(0x23d, 0x00); // Clear half VCO cal clock setting
_io_iface->poke8(0x27d, 0x00); // Clear half VCO cal clock setting
/* The order of the following process is EXTREMELY important. If the
* below functions are modified at all, device initialization and
* calibration might be broken in the process! */
_io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en
_io_iface->poke8(0x014, 0x05); // use SPI for TXNRX ctrl, to ALERT, TX on
_io_iface->poke8(0x013, 0x01); // enable ENSM
boost::this_thread::sleep(boost::posix_time::milliseconds(1));
_calibrate_synth_charge_pumps();
_tune_helper(RX, _rx_freq);
_tune_helper(TX, _tx_freq);
_program_mixer_gm_subtable();
_program_gain_table();
_setup_gain_control(false);
set_bw_filter(RX, _baseband_bw);
set_bw_filter(TX, _baseband_bw);
_setup_adc();
_calibrate_baseband_dc_offset();
_calibrate_rf_dc_offset();
_calibrate_rx_quadrature();
/*
* Rx BB DC and IQ tracking are both disabled by calibration at this
* point. Only issue commands if tracking needs to be turned on.
*/
if (_use_dc_offset_tracking)
_configure_bb_dc_tracking();
if (_use_iq_balance_tracking)
_configure_rx_iq_tracking();
_last_rx_cal_freq = _rx_freq;
_last_tx_cal_freq = _tx_freq;
// cals done, set PPORT config
switch (_client_params->get_digital_interface_mode()) {
case AD9361_DDR_FDD_LVCMOS: {
_io_iface->poke8(0x012, 0x02);
} break;
case AD9361_DDR_FDD_LVDS: {
_io_iface->poke8(0x012, 0x10);
} break;
default:
throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
}
_io_iface->poke8(0x013, 0x01); // Set ENSM FDD bit
_io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en
/* Default TX attentuation to 10dB on both TX1 and TX2 */
_io_iface->poke8(0x073, 0x00);
_io_iface->poke8(0x074, 0x00);
_io_iface->poke8(0x075, 0x00);
_io_iface->poke8(0x076, 0x00);
/* Setup RSSI Measurements */
_io_iface->poke8(0x150, 0x0E); // RSSI Measurement Duration 0, 1
_io_iface->poke8(0x151, 0x00); // RSSI Measurement Duration 2, 3
_io_iface->poke8(0x152, 0xFF); // RSSI Weighted Multiplier 0
_io_iface->poke8(0x153, 0x00); // RSSI Weighted Multiplier 1
_io_iface->poke8(0x154, 0x00); // RSSI Weighted Multiplier 2
_io_iface->poke8(0x155, 0x00); // RSSI Weighted Multiplier 3
_io_iface->poke8(0x156, 0x00); // RSSI Delay
_io_iface->poke8(0x157, 0x00); // RSSI Wait
_io_iface->poke8(0x158, 0x0D); // RSSI Mode Select
_io_iface->poke8(0x15C, 0x67); // Power Measurement Duration
/* Turn on the default RX & TX chains. */
set_active_chains(true, false, false, false);
/* Set TXers & RXers on (only works in FDD mode) */
_io_iface->poke8(0x014, 0x21);
}
void ad9361_device_t::set_io_iface(ad9361_io::sptr io_iface)
{
_io_iface = io_iface;
}
/* This function sets the RX / TX rate between AD9361 and the FPGA, and
* thus determines the interpolation / decimation required in the FPGA to
* achieve the user's requested rate.
*
* This is the only clock setting function that is exposed to the outside. */
double ad9361_device_t::set_clock_rate(const double req_rate)
{
boost::lock_guard lock(_mutex);
if (req_rate > 61.44e6) {
throw uhd::runtime_error("[ad9361_device_t] Requested master clock rate outside range");
}
UHD_LOGGER_TRACE("AD936X")<< boost::format("[ad9361_device_t::set_clock_rate] req_rate=%.10f\n") % req_rate;
/* UHD has a habit of requesting the same rate like four times when it
* starts up. This prevents that, and any bugs in user code that request
* the same rate over and over. */
if (freq_is_nearly_equal(req_rate, _req_clock_rate)) {
// We return _baseband_bw, because that's closest to the
// actual value we're currently running.
return _baseband_bw;
}
/* We must be in the SLEEP / WAIT state to do this. If we aren't already
* there, transition the ENSM to State 0. */
uint8_t current_state = _io_iface->peek8(0x017) & 0x0F;
switch (current_state) {
case 0x05:
/* We are in the ALERT state. */
_io_iface->poke8(0x014, 0x21);
boost::this_thread::sleep(boost::posix_time::milliseconds(5));
_io_iface->poke8(0x014, 0x00);
break;
case 0x0A:
/* We are in the FDD state. */
_io_iface->poke8(0x014, 0x00);
break;
default:
throw uhd::runtime_error("[ad9361_device_t] [set_clock_rate:1] AD9361 in unknown state");
break;
};
/* Store the current chain / antenna selections so that we can restore
* them at the end of this routine; all chains will be enabled from
* within setup_rates for calibration purposes. */
uint8_t orig_tx_chains = _regs.txfilt & 0xC0;
uint8_t orig_rx_chains = _regs.rxfilt & 0xC0;
/* Call into the clock configuration / settings function. This is where
* all the hard work gets done. */
double rate = _setup_rates(req_rate);
UHD_LOGGER_TRACE("AD936X")<< boost::format("[ad9361_device_t::set_clock_rate] rate=%.10f\n") % rate;
/* Transition to the ALERT state and calibrate everything. */
_io_iface->poke8(0x015, 0x04); //dual synth mode, synth en ctrl en
_io_iface->poke8(0x014, 0x05); //use SPI for TXNRX ctrl, to ALERT, TX on
_io_iface->poke8(0x013, 0x01); //enable ENSM
boost::this_thread::sleep(boost::posix_time::milliseconds(1));
_calibrate_synth_charge_pumps();
_tune_helper(RX, _rx_freq);
_tune_helper(TX, _tx_freq);
_program_mixer_gm_subtable();
_program_gain_table();
_setup_gain_control(false);
_reprogram_gains();
set_bw_filter(RX, _baseband_bw);
set_bw_filter(TX, _baseband_bw);
_setup_adc();
_calibrate_baseband_dc_offset();
_calibrate_rf_dc_offset();
_calibrate_rx_quadrature();
/*
* Rx BB DC and IQ tracking are both disabled by calibration at this
* point. Only issue commands if tracking needs to be turned on.
*/
if (_use_dc_offset_tracking)
_configure_bb_dc_tracking();
if (_use_iq_balance_tracking)
_configure_rx_iq_tracking();
_last_rx_cal_freq = _rx_freq;
_last_tx_cal_freq = _tx_freq;
// cals done, set PPORT config
switch (_client_params->get_digital_interface_mode()) {
case AD9361_DDR_FDD_LVCMOS: {
_io_iface->poke8(0x012, 0x02);
}break;
case AD9361_DDR_FDD_LVDS: {
_io_iface->poke8(0x012, 0x10);
}break;
default:
throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
}
_io_iface->poke8(0x013, 0x01); // Set ENSM FDD bit
_io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en
/* End the function in the same state as the entry state. */
switch (current_state) {
case 0x05:
/* We are already in ALERT. */
break;
case 0x0A:
/* Transition back to FDD, and restore the original antenna
* / chain selections. */
_regs.txfilt = (_regs.txfilt & 0x3F) | orig_tx_chains;
_regs.rxfilt = (_regs.rxfilt & 0x3F) | orig_rx_chains;
_io_iface->poke8(0x002, _regs.txfilt);
_io_iface->poke8(0x003, _regs.rxfilt);
_io_iface->poke8(0x014, 0x21);
break;
default:
throw uhd::runtime_error("[ad9361_device_t] [set_clock_rate:2] AD9361 in unknown state");
break;
};
return rate;
}
/* Set which of the four TX / RX chains provided by AD9361 are active.
*
* AD9361 provides two sets of chains, Side A and Side B. Each side
* provides one TX antenna, and one RX antenna. The B200 maintains the USRP
* standard of providing one antenna connection that is both TX & RX, and
* one that is RX-only - for each chain. Thus, the possible antenna and
* chain selections are:
*
* B200 Antenna AD9361 Side AD9361 Chain
* -------------------------------------------------------------------
* TX / RX1 Side A TX1 (when switched to TX)
* TX / RX1 Side A RX1 (when switched to RX)
* RX1 Side A RX1
*
* TX / RX2 Side B TX2 (when switched to TX)
* TX / RX2 Side B RX2 (when switched to RX)
* RX2 Side B RX2
*/
void ad9361_device_t::set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2)
{
boost::lock_guard lock(_mutex);
/* Clear out the current active chain settings. */
_regs.txfilt = _regs.txfilt & 0x3F;
_regs.rxfilt = _regs.rxfilt & 0x3F;
/* Turn on the different chains based on the passed parameters. */
if (tx1) {
_regs.txfilt = _regs.txfilt | 0x40;
}
if (tx2) {
_regs.txfilt = _regs.txfilt | 0x80;
}
if (rx1) {
_regs.rxfilt = _regs.rxfilt | 0x40;
}
if (rx2) {
_regs.rxfilt = _regs.rxfilt | 0x80;
}
/* Check for FDD state */
uint8_t set_back_to_fdd = 0;
uint8_t ensm_state = _io_iface->peek8(0x017) & 0x0F;
if (ensm_state == 0xA) // FDD
{
/* Put into ALERT state (via the FDD flush state). */
_io_iface->poke8(0x014, 0x01);
set_back_to_fdd = 1;
}
/* Wait for FDD flush state to complete (if necessary) */
while (ensm_state == 0xA || ensm_state == 0xB)
ensm_state = _io_iface->peek8(0x017) & 0x0F;
/* Turn on / off the chains. */
_io_iface->poke8(0x002, _regs.txfilt);
_io_iface->poke8(0x003, _regs.rxfilt);
/*
* Last unconditional Tx calibration point. Any later Tx calibration will
* require user intervention (currently triggered by tuning difference that
* is > 100 MHz). Late calibration provides better performance.
*/
if (tx1 | tx2)
_calibrate_tx_quadrature();
/* Put back into FDD state if necessary */
if (set_back_to_fdd)
_io_iface->poke8(0x014, 0x21);
}
/* Tune the RX or TX frequency.
*
* This is the publicly-accessible tune function. It makes sure the tune
* isn't a redundant request, and if not, passes it on to the class's
* internal tune function.
*
* After tuning, it runs any appropriate calibrations. */
double ad9361_device_t::tune(direction_t direction, const double value)
{
boost::lock_guard lock(_mutex);
double last_cal_freq;
if (direction == RX) {
if (freq_is_nearly_equal(value, _req_rx_freq)) {
return _rx_freq;
}
last_cal_freq = _last_rx_cal_freq;
} else if (direction == TX) {
if (freq_is_nearly_equal(value, _req_tx_freq)) {
return _tx_freq;
}
last_cal_freq = _last_tx_cal_freq;
} else {
throw uhd::runtime_error("[ad9361_device_t] [tune] INVALID_CODE_PATH");
}
/* If we aren't already in the ALERT state, we will need to return to
* the FDD state after tuning. */
int not_in_alert = 0;
if ((_io_iface->peek8(0x017) & 0x0F) != 5) {
/* Force the device into the ALERT state. */
not_in_alert = 1;
_io_iface->poke8(0x014, 0x01);
}
/* Tune the RF VCO! */
double tune_freq = _tune_helper(direction, value);
/* Run any necessary calibrations / setups */
if (direction == RX) {
_program_gain_table();
}
/* Update the gain settings. */
_reprogram_gains();
/*
* Only run the following calibrations if we are more than 100MHz away
* from the previous Tx or Rx calibration point. Leave out single shot
* Rx quadrature unless Rx quad-cal is disabled.
*/
if (std::abs(last_cal_freq - tune_freq) > AD9361_CAL_VALID_WINDOW) {
/* Run the calibration algorithms. */
if (direction == RX) {
_calibrate_rf_dc_offset();
if (!_use_iq_balance_tracking)
_calibrate_rx_quadrature();
if (_use_dc_offset_tracking)
_configure_bb_dc_tracking();
_last_rx_cal_freq = tune_freq;
} else {
_calibrate_tx_quadrature();
_last_tx_cal_freq = tune_freq;
}
/* Rx IQ tracking can be disabled on Rx or Tx re-calibration */
if (_use_iq_balance_tracking)
_configure_rx_iq_tracking();
}
/* If we were in the FDD state, return it now. */
if (not_in_alert) {
_io_iface->poke8(0x014, 0x21);
}
return tune_freq;
}
/* Get the current RX or TX frequency. */
double ad9361_device_t::get_freq(direction_t direction)
{
boost::lock_guard lock(_mutex);
if (direction == RX)
return _rx_freq;
else
return _tx_freq;
}
/* Set the gain of RX1, RX2, TX1, or TX2.
*
* Note that the 'value' passed to this function is the gain index
* for RX. Also note that the RX chains are done in terms of gain, and
* the TX chains are done in terms of attenuation. */
double ad9361_device_t::set_gain(direction_t direction, chain_t chain, const double value)
{
boost::lock_guard lock(_mutex);
if (direction == RX) {
int gain_index = static_cast(value);
/* Clip the gain values to the proper min/max gain values. */
if (gain_index > 76)
gain_index = 76;
if (gain_index < 0)
gain_index = 0;
if (chain == CHAIN_1) {
_rx1_gain = value;
_io_iface->poke8(0x109, gain_index);
} else {
_rx2_gain = value;
_io_iface->poke8(0x10c, gain_index);
}
return gain_index;
} else {
/* Setting the below bits causes a change in the TX attenuation word
* to immediately take effect. */
_io_iface->poke8(0x077, 0x40);
_io_iface->poke8(0x07c, 0x40);
/* Each gain step is -0.25dB. Calculate the attenuation necessary
* for the requested gain, convert it into gain steps, then write
* the attenuation word. Max gain (so zero attenuation) is 89.75.
* Ugly values will be written to the attenuation registers if
* "value" is out of bounds, so range checking must be performed
* outside this function.
*/
double atten = AD9361_MAX_GAIN - value;
uint32_t attenreg = uint32_t(atten * 4);
if (chain == CHAIN_1) {
_tx1_gain = value;
_io_iface->poke8(0x073, attenreg & 0xFF);
_io_iface->poke8(0x074, (attenreg >> 8) & 0x01);
} else {
_tx2_gain = value;
_io_iface->poke8(0x075, attenreg & 0xFF);
_io_iface->poke8(0x076, (attenreg >> 8) & 0x01);
}
return AD9361_MAX_GAIN - ((double) (attenreg) / 4);
}
}
void ad9361_device_t::output_test_tone() // On RF side!
{
boost::lock_guard lock(_mutex);
/* Output a 480 kHz tone at 800 MHz */
_io_iface->poke8(0x3F4, 0x0B);
_io_iface->poke8(0x3FC, 0xFF);
_io_iface->poke8(0x3FD, 0xFF);
_io_iface->poke8(0x3FE, 0x3F);
}
void ad9361_device_t::digital_test_tone(bool enb) // Digital output
{
boost::lock_guard lock(_mutex);
_io_iface->poke8(0x3F4, 0x02 | (enb ? 0x01 : 0x00));
}
void ad9361_device_t::data_port_loopback(const bool loopback_enabled)
{
boost::lock_guard lock(_mutex);
_io_iface->poke8(0x3F5, (loopback_enabled ? 0x01 : 0x00));
}
/* Read back the internal RSSI measurement data. The result is in dB
* but not in absolute units. If absolute units are required
* a bench calibration should be done.
* -0.25dB / bit 9bit resolution.*/
double ad9361_device_t::get_rssi(chain_t chain)
{
uint32_t reg_rssi = 0;
uint8_t lsb_bit_pos = 0;
if (chain == CHAIN_1) {
reg_rssi = 0x1A7;
lsb_bit_pos = 0;
}else {
reg_rssi = 0x1A9;
lsb_bit_pos = 1;
}
uint8_t msbs = _io_iface->peek8(reg_rssi);
uint8_t lsb = ((_io_iface->peek8(0x1AB)) >> lsb_bit_pos) & 0x01;
uint16_t val = ((msbs << 1) | lsb);
double rssi = (-0.25f * ((double)val)); //-0.25dB/lsb (See Gain Control Users Guide p. 25)
return rssi;
}
/*
* Returns the reading of the internal temperature sensor.
* One point calibration of the sensor was done according to datasheet
* leading to the given default constant correction factor.
*/
double ad9361_device_t::_get_temperature(const double cal_offset, const double timeout)
{
//set 0x01D[0] to 1 to disable AuxADC GPIO reading
uint8_t tmp = 0;
tmp = _io_iface->peek8(0x01D);
_io_iface->poke8(0x01D, (tmp | 0x01));
_io_iface->poke8(0x00B, 0); //set offset to 0
_io_iface->poke8(0x00C, 0x01); //start reading, clears bit 0x00C[1]
boost::posix_time::ptime start_time = boost::posix_time::microsec_clock::local_time();
boost::posix_time::time_duration elapsed;
//wait for valid data (toggle of bit 1 in 0x00C)
while(((_io_iface->peek8(0x00C) >> 1) & 0x01) == 0) {
boost::this_thread::sleep(boost::posix_time::microseconds(100));
elapsed = boost::posix_time::microsec_clock::local_time() - start_time;
if(elapsed.total_milliseconds() > (timeout*1000))
{
throw uhd::runtime_error("[ad9361_device_t] timeout while reading temperature");
}
}
_io_iface->poke8(0x00C, 0x00); //clear read flag
uint8_t temp = _io_iface->peek8(0x00E); //read temperature.
double tmp_temp = temp/1.140f; //according to ADI driver
tmp_temp = tmp_temp + cal_offset; //Constant offset acquired by one point calibration.
return tmp_temp;
}
double ad9361_device_t::get_average_temperature(const double cal_offset, const size_t num_samples)
{
double d_temp = 0;
for(size_t i = 0; i < num_samples; i++) {
double tmp_temp = _get_temperature(cal_offset);
d_temp += (tmp_temp/num_samples);
}
return d_temp;
}
/*
* Enable/Disable DC offset tracking
*
* Only disable BB tracking while leaving static RF and BB DC calibrations enabled.
* According to correspondance from ADI, turning off Rx BB DC tracking clears the
* correction words so we don't need to be concerned with leaving the calibration
* in a bad state upon disabling. Testing also confirms this behavior.
*
* Note that Rx IQ tracking does not show similar state clearing behavior when
* disabled.
*/
void ad9361_device_t::set_dc_offset_auto(direction_t direction, const bool on)
{
if (direction == RX) {
_use_dc_offset_tracking = on;
_configure_bb_dc_tracking();
} else {
throw uhd::runtime_error("[ad9361_device_t] [set_dc_offset_auto] Tx DC tracking not supported");
}
}
/*
* Enable/Disable IQ balance tracking
*
* Run static Rx quadrature calibration after disabling quadrature tracking.
* This avoids the situation where a user might disable tracking when the loop
* is in a confused state (e.g. at or near saturation). Otherwise, the
* calibration setting could be forced to and left in a bad state.
*/
void ad9361_device_t::set_iq_balance_auto(direction_t direction, const bool on)
{
if (direction == RX) {
_use_iq_balance_tracking = on;
_configure_rx_iq_tracking();
if (!on) {
_io_iface->poke8(0x014, 0x05); // ALERT mode
_calibrate_rx_quadrature();
_io_iface->poke8(0x014, 0x21); // FDD mode
}
} else {
throw uhd::runtime_error("[ad9361_device_t] [set_iq_balance_auto] Tx IQ tracking not supported");
}
}
/* Sets the RX gain mode to be used.
* If a transition from an AGC to an non AGC mode occurs (or vice versa)
* the gain configuration will be reloaded. */
void ad9361_device_t::_setup_agc(chain_t chain, gain_mode_t gain_mode)
{
uint8_t gain_mode_reg = 0;
uint8_t gain_mode_prev = 0;
uint8_t gain_mode_bits_pos = 0;
gain_mode_reg = _io_iface->peek8(0x0FA);
gain_mode_prev = (gain_mode_reg & 0x0F);
if (chain == CHAIN_1) {
gain_mode_bits_pos = 0;
} else if (chain == CHAIN_2) {
gain_mode_bits_pos = 2;
} else
{
throw uhd::runtime_error("[ad9361_device_t] Wrong value for chain");
}
gain_mode_reg = (gain_mode_reg & (~(0x03<poke8(0x0FA, gain_mode_reg);
uint8_t gain_mode_status = _io_iface->peek8(0x0FA);
gain_mode_status = (gain_mode_status & 0x0F);
/*Check if gain mode configuration needs to be reprogrammed*/
if (((gain_mode_prev == 0) && (gain_mode_status != 0)) || ((gain_mode_prev != 0) && (gain_mode_status == 0))) {
if (gain_mode_status == 0) {
/*load manual mode config*/
_setup_gain_control(false);
} else {
/*load agc mode config*/
_setup_gain_control(true);
}
}
}
void ad9361_device_t::set_agc(chain_t chain, bool enable)
{
if(chain == CHAIN_1) {
_rx1_agc_enable = enable;
if(enable) {
_setup_agc(chain, _rx1_agc_mode);
} else {
_setup_agc(chain, GAIN_MODE_MANUAL);
}
} else if (chain == CHAIN_2){
_rx2_agc_enable = enable;
if(enable) {
_setup_agc(chain, _rx2_agc_mode);
} else {
_setup_agc(chain, GAIN_MODE_MANUAL);
}
} else
{
throw uhd::runtime_error("[ad9361_device_t] Wrong value for chain");
}
}
void ad9361_device_t::set_agc_mode(chain_t chain, gain_mode_t gain_mode)
{
if(chain == CHAIN_1) {
_rx1_agc_mode = gain_mode;
if(_rx1_agc_enable) {
_setup_agc(chain, _rx1_agc_mode);
}
} else if(chain == CHAIN_2){
_rx2_agc_mode = gain_mode;
if(_rx2_agc_enable) {
_setup_agc(chain, _rx2_agc_mode);
}
} else
{
throw uhd::runtime_error("[ad9361_device_t] Wrong value for chain");
}
}
std::vector ad9361_device_t::get_filter_names(direction_t direction)
{
std::vector ret;
if(direction == RX) {
for(std::map::iterator it = _rx_filters.begin(); it != _rx_filters.end(); ++it) {
ret.push_back(it->first);
}
} else if (direction == TX)
{
for(std::map::iterator it = _tx_filters.begin(); it != _tx_filters.end(); ++it) {
ret.push_back(it->first);
}
}
return ret;
}
filter_info_base::sptr ad9361_device_t::get_filter(direction_t direction, chain_t chain, const std::string &name)
{
if(direction == RX) {
if (not _rx_filters[name].get)
{
throw uhd::runtime_error("ad9361_device_t::get_filter this filter can not be read.");
}
return _rx_filters[name].get(direction, chain);
} else if (direction == TX) {
if (not _tx_filters[name].get)
{
throw uhd::runtime_error("ad9361_device_t::get_filter this filter can not be read.");
}
return _tx_filters[name].get(direction, chain);
}
throw uhd::runtime_error("ad9361_device_t::get_filter wrong direction parameter.");
}
void ad9361_device_t::set_filter(direction_t direction, chain_t chain, const std::string &name, filter_info_base::sptr filter)
{
if(direction == RX) {
if(not _rx_filters[name].set)
{
throw uhd::runtime_error("ad9361_device_t::set_filter this filter can not be written.");
}
_rx_filters[name].set(direction, chain, filter);
} else if (direction == TX) {
if(not _tx_filters[name].set)
{
throw uhd::runtime_error("ad9361_device_t::set_filter this filter can not be written.");
}
_tx_filters[name].set(direction, chain, filter);
}
}
double ad9361_device_t::set_bw_filter(direction_t direction, const double rf_bw)
{
//both low pass filters are programmed to the same bw. However, their cutoffs will differ.
//Together they should create the requested bb bw.
double set_analog_bb_bw = 0;
if(direction == RX)
{
_rx_bb_lp_bw = _calibrate_baseband_rx_analog_filter(rf_bw); //returns bb bw
_rx_tia_lp_bw = _calibrate_rx_TIAs(rf_bw);
_rx_analog_bw = _rx_bb_lp_bw;
set_analog_bb_bw = _rx_analog_bw;
} else {
_tx_bb_lp_bw = _calibrate_baseband_tx_analog_filter(rf_bw); //returns bb bw
_tx_sec_lp_bw = _calibrate_secondary_tx_filter(rf_bw);
_tx_analog_bw = _tx_bb_lp_bw;
set_analog_bb_bw = _tx_analog_bw;
}
return (2.0 * set_analog_bb_bw);
}
void ad9361_device_t::_set_fir_taps(direction_t direction, chain_t chain, const std::vector& taps)
{
size_t num_taps = taps.size();
size_t num_taps_avail = _get_num_fir_taps(direction);
if(num_taps == num_taps_avail)
{
boost::scoped_array coeffs(new uint16_t[num_taps_avail]);
for (size_t i = 0; i < num_taps_avail; i++)
{
coeffs[i] = uint16_t(taps[i]);
}
_program_fir_filter(direction, chain, num_taps_avail, coeffs.get());
} else if(num_taps < num_taps_avail){
throw uhd::runtime_error("ad9361_device_t::_set_fir_taps not enough coefficients.");
} else {
throw uhd::runtime_error("ad9361_device_t::_set_fir_taps too many coefficients.");
}
}
size_t ad9361_device_t::_get_num_fir_taps(direction_t direction)
{
uint8_t num = 0;
if(direction == RX)
num = _io_iface->peek8(0x0F5);
else
num = _io_iface->peek8(0x065);
num = ((num >> 5) & 0x07);
return ((num + 1) * 16);
}
size_t ad9361_device_t::_get_fir_dec_int(direction_t direction)
{
uint8_t dec_int = 0;
if(direction == RX)
dec_int = _io_iface->peek8(0x003);
else
dec_int = _io_iface->peek8(0x002);
/*
* 0 = dec/int by 1 and bypass filter
* 1 = dec/int by 1
* 2 = dec/int by 2
* 3 = dec/int by 4 */
dec_int = (dec_int & 0x03);
if(dec_int == 3)
{
return 4;
}
return dec_int;
}
std::vector ad9361_device_t::_get_fir_taps(direction_t direction, chain_t chain)
{
int base;
size_t num_taps = _get_num_fir_taps(direction);
uint8_t config;
uint8_t reg_numtaps = (((num_taps / 16) - 1) & 0x07) << 5;
config = reg_numtaps | 0x02; //start the programming clock
if(chain == CHAIN_1)
{
config = config | (1 << 3);
} else if (chain == CHAIN_2){
config = config | (1 << 4);
} else {
throw uhd::runtime_error("[ad9361_device_t] Can not read both chains synchronously");
}
if(direction == RX)
{
base = 0xF0;
} else {
base = 0x60;
}
_io_iface->poke8(base+5,config);
std::vector taps;
uint8_t lower_val;
uint8_t higher_val;
uint16_t coeff;
for(size_t i = 0;i < num_taps;i++)
{
_io_iface->poke8(base,0x00+i);
lower_val = _io_iface->peek8(base+3);
higher_val = _io_iface->peek8(base+4);
coeff = ((higher_val << 8) | lower_val);
taps.push_back(int16_t(coeff));
}
config = (config & (~(1 << 1))); //disable filter clock
_io_iface->poke8(base+5,config);
return taps;
}
/*
* Returns either RX TIA LPF or TX Secondary LPF
* depending on the direction.
* See UG570 for details on used scaling factors. */
filter_info_base::sptr ad9361_device_t::_get_filter_lp_tia_sec(direction_t direction)
{
double cutoff = 0;
if(direction == RX)
{
cutoff = 2.5 * _rx_tia_lp_bw;
} else {
cutoff = 5 * _tx_sec_lp_bw;
}
filter_info_base::sptr lp(new analog_filter_lp(filter_info_base::ANALOG_LOW_PASS, false, 0, "single-pole", cutoff, 20));
return lp;
}
/*
* Returns RX/TX BB LPF.
* See UG570 for details on used scaling factors. */
filter_info_base::sptr ad9361_device_t::_get_filter_lp_bb(direction_t direction)
{
double cutoff = 0;
if(direction == RX)
{
cutoff = 1.4 * _rx_bb_lp_bw;
} else {
cutoff = 1.6 * _tx_bb_lp_bw;
}
filter_info_base::sptr bb_lp(new analog_filter_lp(filter_info_base::ANALOG_LOW_PASS, false, 1, "third-order Butterworth", cutoff, 60));
return bb_lp;
}
/*
* For RX direction the DEC3 is returned.
* For TX direction the INT3 is returned. */
filter_info_base::sptr ad9361_device_t::_get_filter_dec_int_3(direction_t direction)
{
uint8_t enable = 0;
double rate = _adcclock_freq;
double full_scale;
size_t dec = 0;
size_t interpol = 0;
filter_info_base::filter_type type = filter_info_base::DIGITAL_I16;
std::string name;
int16_t taps_array_rx[] = {55, 83, 0, -393, -580, 0, 1914, 4041, 5120, 4041, 1914, 0, -580, -393, 0, 83, 55};
int16_t taps_array_tx[] = {36, -19, 0, -156, -12, 0, 479, 233, 0, -1215, -993, 0, 3569, 6277, 8192, 6277, 3569, 0, -993, -1215, 0, 223, 479, 0, -12, -156, 0, -19, 36};
std::vector taps;
filter_info_base::sptr ret;
if(direction == RX)
{
full_scale = 16384;
dec = 3;
interpol = 1;
enable = _io_iface->peek8(0x003);
enable = ((enable >> 4) & 0x03);
taps.assign(taps_array_rx, taps_array_rx + sizeof(taps_array_rx) / sizeof(int16_t) );
} else {
full_scale = 8192;
dec = 1;
interpol = 3;
uint8_t use_dac_clk_div = _io_iface->peek8(0x00A);
use_dac_clk_div = ((use_dac_clk_div >> 3) & 0x01);
if(use_dac_clk_div == 1)
{
rate = rate / 2;
}
enable = _io_iface->peek8(0x002);
enable = ((enable >> 4) & 0x03);
if(enable == 2) //0 => int. by 1, 1 => int. by 2 (HB3), 2 => int. by 3
{
rate /= 3;
}
taps.assign(taps_array_tx, taps_array_tx + sizeof(taps_array_tx) / sizeof(int16_t) );
}
ret = filter_info_base::sptr(new digital_filter_base(type, (enable != 2) ? true : false, 2, rate, interpol, dec, full_scale, taps.size(), taps));
return ret;
}
filter_info_base::sptr ad9361_device_t::_get_filter_hb_3(direction_t direction)
{
uint8_t enable = 0;
double rate = _adcclock_freq;
double full_scale = 0;
size_t dec = 1;
size_t interpol = 1;
filter_info_base::filter_type type = filter_info_base::DIGITAL_I16;
int16_t taps_array_rx[] = {1, 4, 6, 4, 1};
int16_t taps_array_tx[] = {1, 2, 1};
std::vector taps;
if(direction == RX)
{
full_scale = 16;
dec = 2;
enable = _io_iface->peek8(0x003);
enable = ((enable >> 4) & 0x03);
taps.assign(taps_array_rx, taps_array_rx + sizeof(taps_array_rx) / sizeof(int16_t) );
} else {
full_scale = 2;
interpol = 2;
uint8_t use_dac_clk_div = _io_iface->peek8(0x00A);
use_dac_clk_div = ((use_dac_clk_div >> 3) & 0x01);
if(use_dac_clk_div == 1)
{
rate = rate / 2;
}
enable = _io_iface->peek8(0x002);
enable = ((enable >> 4) & 0x03);
if(enable == 1)
{
rate /= 2;
}
taps.assign(taps_array_tx, taps_array_tx + sizeof(taps_array_tx) / sizeof(int16_t) );
}
filter_info_base::sptr hb = filter_info_base::sptr(new digital_filter_base(type, (enable != 1) ? true : false, 2, rate, interpol, dec, full_scale, taps.size(), taps));
return hb;
}
filter_info_base::sptr ad9361_device_t::_get_filter_hb_2(direction_t direction)
{
uint8_t enable = 0;
double rate = _adcclock_freq;
double full_scale = 0;
size_t dec = 1;
size_t interpol = 1;
filter_info_base::filter_type type = filter_info_base::DIGITAL_I16;
int16_t taps_array[] = {-9, 0, 73, 128, 73, 0, -9};
std::vector taps(taps_array, taps_array + sizeof(taps_array) / sizeof(int16_t) );
digital_filter_base::sptr hb_3 = boost::dynamic_pointer_cast >(_get_filter_hb_3(direction));
digital_filter_base::sptr dec_int_3 = boost::dynamic_pointer_cast >(_get_filter_dec_int_3(direction));
if(direction == RX)
{
full_scale = 256;
dec = 2;
enable = _io_iface->peek8(0x003);
} else {
full_scale = 128;
interpol = 2;
enable = _io_iface->peek8(0x002);
}
enable = ((enable >> 3) & 0x01);
if(!(hb_3->is_bypassed()))
{
if(direction == RX)
{
rate = hb_3->get_output_rate();
}else if (direction == TX) {
rate = hb_3->get_input_rate();
if(enable)
{
rate /= 2;
}
}
} else { //else dec3/int3 or none of them is used.
if(direction == RX)
{
rate = dec_int_3->get_output_rate();
}else if (direction == TX) {
rate = dec_int_3->get_input_rate();
if(enable)
{
rate /= 2;
}
}
}
filter_info_base::sptr hb(new digital_filter_base(type, (enable == 0) ? true : false, 3, rate, interpol, dec, full_scale, taps.size(), taps));
return hb;
}
filter_info_base::sptr ad9361_device_t::_get_filter_hb_1(direction_t direction)
{
uint8_t enable = 0;
double rate = 0;
double full_scale = 0;
size_t dec = 1;
size_t interpol = 1;
filter_info_base::filter_type type = filter_info_base::DIGITAL_I16;
std::vector taps;
int16_t taps_rx_array[] = {-8, 0, 42, 0, -147, 0, 619, 1013, 619, 0, -147, 0, 42, 0, -8};
int16_t taps_tx_array[] = {-53, 0, 313, 0, -1155, 0, 4989, 8192, 4989, 0, -1155, 0, 313, 0, -53};
digital_filter_base::sptr hb_2 = boost::dynamic_pointer_cast >(_get_filter_hb_2(direction));
if(direction == RX)
{
full_scale = 2048;
dec = 2;
enable = _io_iface->peek8(0x003);
enable = ((enable >> 2) & 0x01);
rate = hb_2->get_output_rate();
taps.assign(taps_rx_array, taps_rx_array + sizeof(taps_rx_array) / sizeof(int16_t) );
} else if (direction == TX) {
full_scale = 8192;
interpol = 2;
enable = _io_iface->peek8(0x002);
enable = ((enable >> 2) & 0x01);
rate = hb_2->get_input_rate();
if(enable)
{
rate /= 2;
}
taps.assign(taps_tx_array, taps_tx_array + sizeof(taps_tx_array) / sizeof(int16_t) );
}
filter_info_base::sptr hb(new digital_filter_base(type, (enable == 0) ? true : false, 4, rate, interpol, dec, full_scale, taps.size(), taps));
return hb;
}
filter_info_base::sptr ad9361_device_t::_get_filter_fir(direction_t direction, chain_t chain)
{
double rate = 0;
size_t dec = 1;
size_t interpol = 1;
size_t max_num_taps = 128;
uint8_t enable = 1;
digital_filter_base::sptr hb_1 = boost::dynamic_pointer_cast >(_get_filter_hb_1(direction));
if(direction == RX)
{
dec = _get_fir_dec_int(direction);
if(dec == 0)
{
enable = 0;
dec = 1;
}
interpol = 1;
rate = hb_1->get_output_rate();
}else if (direction == TX) {
interpol = _get_fir_dec_int(direction);
if(interpol == 0)
{
enable = 0;
interpol = 1;
}
dec = 1;
rate = hb_1->get_input_rate();
if(enable)
{
rate /= interpol;
}
}
max_num_taps = _get_num_fir_taps(direction);
filter_info_base::sptr fir(new digital_filter_fir(filter_info_base::DIGITAL_FIR_I16, (enable == 0) ? true : false, 5, rate, interpol, dec, 32767, max_num_taps, _get_fir_taps(direction, chain)));
return fir;
}
void ad9361_device_t::_set_filter_fir(direction_t direction, chain_t channel, filter_info_base::sptr filter)
{
digital_filter_fir::sptr fir = boost::dynamic_pointer_cast >(filter);
//only write taps. Ignore everything else for now
_set_fir_taps(direction, channel, fir->get_taps());
}
/*
* If BW of one of the analog filters gets overwritten manually,
* _tx_analog_bw and _rx_analog_bw are not valid any more!
* For useful data in those variables set_bw_filter method should be used
*/
void ad9361_device_t::_set_filter_lp_bb(direction_t direction, filter_info_base::sptr filter)
{
analog_filter_lp::sptr lpf = boost::dynamic_pointer_cast(filter);
double bw = lpf->get_cutoff();
if(direction == RX)
{
//remember: this function takes rf bw as its input and calibrated to 1.4 x the given value
_rx_bb_lp_bw = _calibrate_baseband_rx_analog_filter(2 * bw / 1.4); //returns bb bw
} else {
//remember: this function takes rf bw as its input and calibrates to 1.6 x the given value
_tx_bb_lp_bw = _calibrate_baseband_tx_analog_filter(2 * bw / 1.6);
}
}
void ad9361_device_t::_set_filter_lp_tia_sec(direction_t direction, filter_info_base::sptr filter)
{
analog_filter_lp::sptr lpf = boost::dynamic_pointer_cast(filter);
double bw = lpf->get_cutoff();
if(direction == RX)
{
//remember: this function takes rf bw as its input and calibrated to 2.5 x the given value
_rx_tia_lp_bw = _calibrate_rx_TIAs(2 * bw / 2.5); //returns bb bw
} else {
//remember: this function takes rf bw as its input and calibrates to 5 x the given value
_tx_sec_lp_bw = _calibrate_secondary_tx_filter(2 * bw / 5);
}
}
}}