// // Copyright 2012-2014 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "b200_regs.hpp" #include "b200_impl.hpp" #include "validate_subdev_spec.hpp" #include "../../transport/super_recv_packet_handler.hpp" #include "../../transport/super_send_packet_handler.hpp" #include "async_packet_handler.hpp" #include #include #include #include #include using namespace uhd; using namespace uhd::usrp; using namespace uhd::transport; /*********************************************************************** * update streamer rates **********************************************************************/ void b200_impl::check_tick_rate_with_current_streamers(double rate) { // Defined in b200_impl.cpp enforce_tick_rate_limits(max_chan_count("RX"), rate, "RX"); enforce_tick_rate_limits(max_chan_count("TX"), rate, "TX"); } // direction can either be "TX", "RX", or empty (default) size_t b200_impl::max_chan_count(const std::string &direction /* = "" */) { size_t max_count = 0; BOOST_FOREACH(radio_perifs_t &perif, _radio_perifs) { if ((direction == "RX" or direction.empty()) and not perif.rx_streamer.expired()) { boost::shared_ptr rx_streamer = boost::dynamic_pointer_cast(perif.rx_streamer.lock()); max_count = std::max(max_count, rx_streamer->get_num_channels()); } if ((direction == "TX" or direction.empty()) and not perif.tx_streamer.expired()) { boost::shared_ptr tx_streamer = boost::dynamic_pointer_cast(perif.tx_streamer.lock()); max_count = std::max(max_count, tx_streamer->get_num_channels()); } } return max_count; } void b200_impl::check_streamer_args(const uhd::stream_args_t &args, double tick_rate, const std::string &direction /*= ""*/) { std::set chans_set; for (size_t stream_i = 0; stream_i < args.channels.size(); stream_i++) { const size_t chan = args.channels[stream_i]; chans_set.insert(chan); } enforce_tick_rate_limits(chans_set.size(), tick_rate, direction); // Defined in b200_impl.cpp } void b200_impl::set_auto_tick_rate( const double rate, const fs_path &tree_dsp_path, size_t num_chans ) { if (num_chans == 0) { // Divine them num_chans = std::max(size_t(1), max_chan_count()); } const double max_tick_rate = ad9361_device_t::AD9361_MAX_CLOCK_RATE/num_chans; if (rate != 0.0 and (uhd::math::fp_compare::fp_compare_delta(rate, uhd::math::FREQ_COMPARISON_DELTA_HZ) > uhd::math::fp_compare::fp_compare_delta(max_tick_rate, uhd::math::FREQ_COMPARISON_DELTA_HZ))) { throw uhd::value_error(str( boost::format("Requested sampling rate (%.2f Msps) exceeds maximum tick rate of %.2f MHz.") % (rate / 1e6) % (max_tick_rate / 1e6) )); } // See also the doxygen documentation for these steps in b200_impl.hpp // Step 1: Obtain LCM and max rate from all relevant dsps boost::uint32_t lcm_rate = (rate == 0) ? 1 : static_cast(floor(rate + 0.5)); for (int i = 0; i < 2; i++) { // Loop through rx and tx std::string dir = (i == 0) ? "tx" : "rx"; // We have no way of knowing which DSPs are used, so we check them all. BOOST_FOREACH(const std::string &dsp_no, _tree->list(str(boost::format("/mboards/0/%s_dsps") % dir))) { fs_path dsp_path = str(boost::format("/mboards/0/%s_dsps/%s") % dir % dsp_no); if (dsp_path == tree_dsp_path) { continue; } double this_dsp_rate = _tree->access(dsp_path / "rate/value").get(); // Check if the user selected something completely unreasonable: if (uhd::math::fp_compare::fp_compare_delta(this_dsp_rate, uhd::math::FREQ_COMPARISON_DELTA_HZ) > uhd::math::fp_compare::fp_compare_delta(max_tick_rate, uhd::math::FREQ_COMPARISON_DELTA_HZ)) { throw uhd::value_error(str( boost::format("Requested sampling rate (%.2f Msps) exceeds maximum tick rate of %.2f MHz.") % (this_dsp_rate / 1e6) % (max_tick_rate / 1e6) )); } // If this_dsp_rate == 0.0, the sampling rate for this DSP hasn't been set, so // we don't take that into consideration. if (this_dsp_rate == 0.0) { continue; } lcm_rate = boost::math::lcm( lcm_rate, static_cast(floor(this_dsp_rate + 0.5)) ); } } if (lcm_rate == 1) { // In this case, no one has ever set a sampling rate. return; } // Step 2: Check if the lcm_rate is within available limits: double base_rate = static_cast(lcm_rate); if (uhd::math::fp_compare::fp_compare_delta(base_rate, uhd::math::FREQ_COMPARISON_DELTA_HZ) > uhd::math::fp_compare::fp_compare_delta(max_tick_rate, uhd::math::FREQ_COMPARISON_DELTA_HZ)) { UHD_MSG(warning) << "Cannot automatically determine an appropriate tick rate for these sampling rates." << std::endl << "Consider using different sampling rates, or manually specify a suitable master clock rate." << std::endl; return; // Let the others handle this } // Step 3: Choose the new rate // Rules for choosing the tick rate: // Choose a rate that is a power of 2 larger than the sampling rate, // but at least 4. Cannot exceed the max tick rate, of course, but must // be larger than the minimum tick rate. // An equation that does all that is: // // f_auto = r * 2^floor(log2(f_max/r)) // = base_rate * multiplier // // where r is the base rate and f_max is the maximum tick rate. The case // where floor() yields 1 must be caught. const double min_tick_rate = _codec_ctrl->get_clock_rate_range().start(); // We use shifts here instead of 2^x because exp2() is not available in all compilers, // also this guarantees no rounding issues. The type cast to int32_t serves as floor(): boost::int32_t multiplier = (1 << boost::int32_t(uhd::math::log2(max_tick_rate / base_rate))); if (multiplier == 2 and base_rate >= min_tick_rate) { // Don't bother (see above) multiplier = 1; } double new_rate = base_rate * multiplier; UHD_ASSERT_THROW( uhd::math::fp_compare::fp_compare_delta(new_rate, uhd::math::FREQ_COMPARISON_DELTA_HZ) >= uhd::math::fp_compare::fp_compare_delta(min_tick_rate, uhd::math::FREQ_COMPARISON_DELTA_HZ) ); UHD_ASSERT_THROW( uhd::math::fp_compare::fp_compare_delta(new_rate, uhd::math::FREQ_COMPARISON_DELTA_HZ) <= uhd::math::fp_compare::fp_compare_delta(max_tick_rate, uhd::math::FREQ_COMPARISON_DELTA_HZ) ); if (!uhd::math::frequencies_are_equal(_tree->access("/mboards/0/tick_rate").get(), new_rate)) { _tree->access("/mboards/0/tick_rate").set(new_rate); } } void b200_impl::update_tick_rate(const double new_tick_rate) { check_tick_rate_with_current_streamers(new_tick_rate); BOOST_FOREACH(radio_perifs_t &perif, _radio_perifs) { boost::shared_ptr my_streamer = boost::dynamic_pointer_cast(perif.rx_streamer.lock()); if (my_streamer) my_streamer->set_tick_rate(new_tick_rate); perif.framer->set_tick_rate(new_tick_rate); } BOOST_FOREACH(radio_perifs_t &perif, _radio_perifs) { boost::shared_ptr my_streamer = boost::dynamic_pointer_cast(perif.tx_streamer.lock()); if (my_streamer) my_streamer->set_tick_rate(new_tick_rate); perif.deframer->set_tick_rate(new_tick_rate); } } #define CHECK_RATE_AND_THROW(rate) \ if (uhd::math::fp_compare::fp_compare_delta(rate, uhd::math::FREQ_COMPARISON_DELTA_HZ) > \ uhd::math::fp_compare::fp_compare_delta(ad9361_device_t::AD9361_MAX_CLOCK_RATE, uhd::math::FREQ_COMPARISON_DELTA_HZ)) { \ throw uhd::value_error(str( \ boost::format("Requested sampling rate (%.2f Msps) exceeds maximum tick rate.") \ % (rate / 1e6) \ )); \ } double b200_impl::coerce_rx_samp_rate(rx_dsp_core_3000::sptr ddc, size_t dspno, const double rx_rate) { // Have to set tick rate first, or the ddc will change the requested rate based on default tick rate if (_tree->access("/mboards/0/auto_tick_rate").get()) { CHECK_RATE_AND_THROW(rx_rate); const std::string dsp_path = (boost::format("/mboards/0/rx_dsps/%s") % dspno).str(); set_auto_tick_rate(rx_rate, dsp_path); } return ddc->set_host_rate(rx_rate); } #define CHECK_BANDWIDTH(dir) \ if (rate > _codec_ctrl->get_bw_filter_range(dir).stop()) { \ UHD_MSG(warning) \ << "Selected " << dir << " bandwidth (" << (rate/1e6) << " MHz) exceeds\n" \ << "analog frontend filter bandwidth (" << (_codec_ctrl->get_bw_filter_range(dir).stop()/1e6) << " MHz)." \ << std::endl; \ } void b200_impl::update_rx_samp_rate(const size_t dspno, const double rate) { boost::shared_ptr my_streamer = boost::dynamic_pointer_cast(_radio_perifs[dspno].rx_streamer.lock()); if (not my_streamer) return; my_streamer->set_samp_rate(rate); const double adj = _radio_perifs[dspno].ddc->get_scaling_adjustment(); my_streamer->set_scale_factor(adj); CHECK_BANDWIDTH("Rx"); } double b200_impl::coerce_tx_samp_rate(tx_dsp_core_3000::sptr duc, size_t dspno, const double tx_rate) { // Have to set tick rate first, or the duc will change the requested rate based on default tick rate if (_tree->access("/mboards/0/auto_tick_rate").get()) { CHECK_RATE_AND_THROW(tx_rate); const std::string dsp_path = (boost::format("/mboards/0/tx_dsps/%s") % dspno).str(); set_auto_tick_rate(tx_rate, dsp_path); } return duc->set_host_rate(tx_rate); } void b200_impl::update_tx_samp_rate(const size_t dspno, const double rate) { boost::shared_ptr my_streamer = boost::dynamic_pointer_cast(_radio_perifs[dspno].tx_streamer.lock()); if (not my_streamer) return; my_streamer->set_samp_rate(rate); const double adj = _radio_perifs[dspno].duc->get_scaling_adjustment(); my_streamer->set_scale_factor(adj); CHECK_BANDWIDTH("Tx"); } /*********************************************************************** * frontend selection **********************************************************************/ uhd::usrp::subdev_spec_t b200_impl::coerce_subdev_spec(const uhd::usrp::subdev_spec_t &spec_) { uhd::usrp::subdev_spec_t spec = spec_; // Because of the confusing nature of the subdevs on B200 // with different revs, we provide a convenience override, // where both A:A and A:B are mapped to A:A. // // Any other spec is probably illegal and will be caught by // validate_subdev_spec(). if (spec.size() and _b200_type == B200 and spec[0].sd_name == "B") { spec[0].sd_name = "A"; } return spec; } void b200_impl::update_subdev_spec(const std::string &tx_rx, const uhd::usrp::subdev_spec_t &spec) { //sanity checking if (spec.size()) { validate_subdev_spec(_tree, spec, tx_rx); } std::vector chan_to_dsp_map(spec.size(), 0); for (size_t i = 0; i < spec.size(); i++) { chan_to_dsp_map[i] = (spec[i].sd_name == "A") ? 0 : 1; } _tree->access >("/mboards/0" / (tx_rx + "_chan_dsp_mapping")).set(chan_to_dsp_map); this->update_enables(); } static void b200_if_hdr_unpack_le( const boost::uint32_t *packet_buff, vrt::if_packet_info_t &if_packet_info ){ if_packet_info.link_type = vrt::if_packet_info_t::LINK_TYPE_CHDR; return vrt::if_hdr_unpack_le(packet_buff, if_packet_info); } static void b200_if_hdr_pack_le( boost::uint32_t *packet_buff, vrt::if_packet_info_t &if_packet_info ){ if_packet_info.link_type = vrt::if_packet_info_t::LINK_TYPE_CHDR; return vrt::if_hdr_pack_le(packet_buff, if_packet_info); } /*********************************************************************** * Async Data **********************************************************************/ bool b200_impl::recv_async_msg( async_metadata_t &async_metadata, double timeout ){ return _async_task_data->async_md->pop_with_timed_wait(async_metadata, timeout); } /* * This method is constantly called in a msg_task loop. * Incoming messages are dispatched in to the hosts radio_ctrl_cores. * The radio_ctrl_core queues are accessed via a weak_ptr to them, stored in AsyncTaskData. * During shutdown the radio_ctrl_core dtor's are called. * An empty peek32(0) is sent out to flush pending async messages. * The response to those messages can't be delivered to the ctrl_core queues anymore * because the shared pointer corresponding to the weak_ptrs is no longer valid. * Those stranded messages are put into a dump_queue implemented in msg_task. * A radio_ctrl_core can search for missing messages there. */ boost::optional b200_impl::handle_async_task( uhd::transport::zero_copy_if::sptr xport, boost::shared_ptr data ) { managed_recv_buffer::sptr buff = xport->get_recv_buff(); if (not buff or buff->size() < 8) return uhd::msg_task::msg_type_t(0, uhd::msg_task::msg_payload_t()); const boost::uint32_t sid = uhd::wtohx(buff->cast()[1]); switch (sid) { //if the packet is a control response case B200_RESP0_MSG_SID: case B200_RESP1_MSG_SID: case B200_LOCAL_RESP_SID: { radio_ctrl_core_3000::sptr ctrl; if (sid == B200_RESP0_MSG_SID) ctrl = data->radio_ctrl[0].lock(); if (sid == B200_RESP1_MSG_SID) ctrl = data->radio_ctrl[1].lock(); if (sid == B200_LOCAL_RESP_SID) ctrl = data->local_ctrl.lock(); if (ctrl){ ctrl->push_response(buff->cast()); } else{ return std::make_pair(sid, uhd::msg_task::buff_to_vector(buff->cast(), buff->size() ) ); } break; } //if the packet is a uart message case B200_RX_GPS_UART_SID: { data->gpsdo_uart->handle_uart_packet(buff); break; } //or maybe the packet is a TX async message case B200_TX_MSG0_SID: case B200_TX_MSG1_SID: { const size_t i = (sid == B200_TX_MSG0_SID)? 0 : 1; //extract packet info vrt::if_packet_info_t if_packet_info; if_packet_info.num_packet_words32 = buff->size()/sizeof(boost::uint32_t); const boost::uint32_t *packet_buff = buff->cast(); //unpacking can fail try { b200_if_hdr_unpack_le(packet_buff, if_packet_info); } catch(const std::exception &ex) { UHD_MSG(error) << "Error parsing ctrl packet: " << ex.what() << std::endl; break; } //fill in the async metadata async_metadata_t metadata; load_metadata_from_buff(uhd::wtohx, metadata, if_packet_info, packet_buff, _tick_rate, i); data->async_md->push_with_pop_on_full(metadata); standard_async_msg_prints(metadata); break; } //doh! default: UHD_MSG(error) << "Got a ctrl packet with unknown SID " << sid << std::endl; } return uhd::msg_task::msg_type_t(0, uhd::msg_task::msg_payload_t()); } /*********************************************************************** * Receive streamer **********************************************************************/ rx_streamer::sptr b200_impl::get_rx_stream(const uhd::stream_args_t &args_) { boost::mutex::scoped_lock lock(_transport_setup_mutex); stream_args_t args = args_; //setup defaults for unspecified values if (args.otw_format.empty()) args.otw_format = "sc16"; args.channels = args.channels.empty()? std::vector(1, 0) : args.channels; if (_tree->access("/mboards/0/auto_tick_rate").get()) { set_auto_tick_rate(0, "", args.channels.size()); } check_streamer_args(args, this->get_tick_rate(), "RX"); boost::shared_ptr my_streamer; for (size_t stream_i = 0; stream_i < args.channels.size(); stream_i++) { const size_t radio_index = _tree->access >("/mboards/0/rx_chan_dsp_mapping") .get().at(args.channels[stream_i]); radio_perifs_t &perif = _radio_perifs[radio_index]; if (args.otw_format == "sc16") perif.ctrl->poke32(TOREG(SR_RX_FMT), 0); if (args.otw_format == "sc12") perif.ctrl->poke32(TOREG(SR_RX_FMT), 1); if (args.otw_format == "fc32") perif.ctrl->poke32(TOREG(SR_RX_FMT), 2); if (args.otw_format == "sc8") perif.ctrl->poke32(TOREG(SR_RX_FMT), 3); const boost::uint32_t sid = radio_index ? B200_RX_DATA1_SID : B200_RX_DATA0_SID; //calculate packet size static const size_t hdr_size = 0 + vrt::max_if_hdr_words32*sizeof(boost::uint32_t) //+ sizeof(vrt::if_packet_info_t().tlr) //no longer using trailer - sizeof(vrt::if_packet_info_t().cid) //no class id ever used - sizeof(vrt::if_packet_info_t().tsi) //no int time ever used ; const size_t bpp = _data_transport->get_recv_frame_size() - hdr_size; const size_t bpi = convert::get_bytes_per_item(args.otw_format); size_t spp = unsigned(args.args.cast("spp", bpp/bpi)); spp = std::min(4092, spp); //FPGA FIFO maximum for framing at full rate //make the new streamer given the samples per packet if (not my_streamer) my_streamer = boost::make_shared(spp); my_streamer->resize(args.channels.size()); //init some streamer stuff my_streamer->set_vrt_unpacker(&b200_if_hdr_unpack_le); //set the converter uhd::convert::id_type id; id.input_format = args.otw_format + "_item32_le"; id.num_inputs = 1; id.output_format = args.cpu_format; id.num_outputs = 1; my_streamer->set_converter(id); perif.framer->clear(); perif.framer->set_nsamps_per_packet(spp); perif.framer->set_sid(sid); perif.framer->setup(args); perif.ddc->setup(args); _demux->realloc_sid(sid); my_streamer->set_xport_chan_get_buff(stream_i, boost::bind( &recv_packet_demuxer_3000::get_recv_buff, _demux, sid, _1 ), true /*flush*/); my_streamer->set_overflow_handler(stream_i, boost::bind( &b200_impl::handle_overflow, this, radio_index )); my_streamer->set_issue_stream_cmd(stream_i, boost::bind( &rx_vita_core_3000::issue_stream_command, perif.framer, _1 )); perif.rx_streamer = my_streamer; //store weak pointer //sets all tick and samp rates on this streamer this->update_tick_rate(this->get_tick_rate()); _tree->access(str(boost::format("/mboards/0/rx_dsps/%u/rate/value") % radio_index)).update(); } this->update_enables(); return my_streamer; } void b200_impl::handle_overflow(const size_t radio_index) { boost::shared_ptr my_streamer = boost::dynamic_pointer_cast(_radio_perifs[radio_index].rx_streamer.lock()); if (my_streamer->get_num_channels() == 2) //MIMO time { //find out if we were in continuous mode before stopping const bool in_continuous_streaming_mode = _radio_perifs[radio_index].framer->in_continuous_streaming_mode(); //stop streaming my_streamer->issue_stream_cmd(stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS); //flush demux _demux->realloc_sid(B200_RX_DATA0_SID); _demux->realloc_sid(B200_RX_DATA1_SID); //flush actual transport while (_data_transport->get_recv_buff(0.001)){} //restart streaming if (in_continuous_streaming_mode) { stream_cmd_t stream_cmd(stream_cmd_t::STREAM_MODE_START_CONTINUOUS); stream_cmd.stream_now = false; stream_cmd.time_spec = _radio_perifs[radio_index].time64->get_time_now() + time_spec_t(0.01); my_streamer->issue_stream_cmd(stream_cmd); } } else _radio_perifs[radio_index].framer->handle_overflow(); } /*********************************************************************** * Transmit streamer **********************************************************************/ tx_streamer::sptr b200_impl::get_tx_stream(const uhd::stream_args_t &args_) { boost::mutex::scoped_lock lock(_transport_setup_mutex); stream_args_t args = args_; //setup defaults for unspecified values if (args.otw_format.empty()) args.otw_format = "sc16"; args.channels = args.channels.empty()? std::vector(1, 0) : args.channels; if (_tree->access("/mboards/0/auto_tick_rate").get()) { set_auto_tick_rate(0, "", args.channels.size()); } check_streamer_args(args, this->get_tick_rate(), "RX"); boost::shared_ptr my_streamer; for (size_t stream_i = 0; stream_i < args.channels.size(); stream_i++) { const size_t radio_index = _tree->access >("/mboards/0/tx_chan_dsp_mapping") .get().at(args.channels[stream_i]); radio_perifs_t &perif = _radio_perifs[radio_index]; if (args.otw_format == "sc16") perif.ctrl->poke32(TOREG(SR_TX_FMT), 0); if (args.otw_format == "sc12") perif.ctrl->poke32(TOREG(SR_TX_FMT), 1); if (args.otw_format == "fc32") perif.ctrl->poke32(TOREG(SR_TX_FMT), 2); if (args.otw_format == "sc8") perif.ctrl->poke32(TOREG(SR_TX_FMT), 3); //calculate packet size static const size_t hdr_size = 0 + vrt::max_if_hdr_words32*sizeof(boost::uint32_t) //+ sizeof(vrt::if_packet_info_t().tlr) //forced to have trailer - sizeof(vrt::if_packet_info_t().cid) //no class id ever used - sizeof(vrt::if_packet_info_t().tsi) //no int time ever used ; static const size_t bpp = _data_transport->get_send_frame_size() - hdr_size; const size_t spp = bpp/convert::get_bytes_per_item(args.otw_format); //make the new streamer given the samples per packet if (not my_streamer) my_streamer = boost::make_shared(spp); my_streamer->resize(args.channels.size()); //init some streamer stuff my_streamer->set_vrt_packer(&b200_if_hdr_pack_le); //set the converter uhd::convert::id_type id; id.input_format = args.cpu_format; id.num_inputs = 1; id.output_format = args.otw_format + "_item32_le"; id.num_outputs = 1; my_streamer->set_converter(id); perif.deframer->clear(); perif.deframer->setup(args); perif.duc->setup(args); my_streamer->set_xport_chan_get_buff(stream_i, boost::bind( &zero_copy_if::get_send_buff, _data_transport, _1 )); my_streamer->set_async_receiver(boost::bind( &async_md_type::pop_with_timed_wait, _async_task_data->async_md, _1, _2 )); my_streamer->set_xport_chan_sid(stream_i, true, radio_index ? B200_TX_DATA1_SID : B200_TX_DATA0_SID); my_streamer->set_enable_trailer(false); //TODO not implemented trailer support yet perif.tx_streamer = my_streamer; //store weak pointer //sets all tick and samp rates on this streamer this->update_tick_rate(this->get_tick_rate()); _tree->access(str(boost::format("/mboards/0/tx_dsps/%u/rate/value") % radio_index)).update(); } this->update_enables(); return my_streamer; }