// // Copyright 2012-2014 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "b200_impl.hpp" #include "b200_regs.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace uhd; using namespace uhd::usrp; using namespace uhd::transport; static const boost::posix_time::milliseconds REENUMERATION_TIMEOUT_MS(3000); //! mapping of frontend to radio perif index static const size_t FE1 = 1; static const size_t FE2 = 0; class b200_ad9361_client_t : public ad9361_params { public: ~b200_ad9361_client_t() {} double get_band_edge(frequency_band_t band) { switch (band) { case AD9361_RX_BAND0: return 2.2e9; case AD9361_RX_BAND1: return 4.0e9; case AD9361_TX_BAND0: return 2.5e9; default: return 0; } } clocking_mode_t get_clocking_mode() { return AD9361_XTAL_N_CLK_PATH; } digital_interface_mode_t get_digital_interface_mode() { return AD9361_DDR_FDD_LVCMOS; } digital_interface_delays_t get_digital_interface_timing() { digital_interface_delays_t delays; delays.rx_clk_delay = 0; delays.rx_data_delay = 0xF; delays.tx_clk_delay = 0; delays.tx_data_delay = 0xF; return delays; } }; /*********************************************************************** * Discovery **********************************************************************/ static device_addrs_t b200_find(const device_addr_t &hint) { device_addrs_t b200_addrs; //return an empty list of addresses when type is set to non-b200 if (hint.has_key("type") and hint["type"] != "b200") return b200_addrs; //Return an empty list of addresses when an address or resource is specified, //since an address and resource is intended for a different, non-USB, device. BOOST_FOREACH(device_addr_t hint_i, separate_device_addr(hint)) { if (hint_i.has_key("addr") || hint_i.has_key("resource")) return b200_addrs; } boost::uint16_t vid, pid; if(hint.has_key("vid") && hint.has_key("pid") && hint.has_key("type") && hint["type"] == "b200") { vid = uhd::cast::hexstr_cast(hint.get("vid")); pid = uhd::cast::hexstr_cast(hint.get("pid")); } else { vid = B200_VENDOR_ID; pid = B200_PRODUCT_ID; } // Important note: // The get device list calls are nested inside the for loop. // This allows the usb guts to decontruct when not in use, // so that re-enumeration after fw load can occur successfully. // This requirement is a courtesy of libusb1.0 on windows. //find the usrps and load firmware size_t found = 0; BOOST_FOREACH(usb_device_handle::sptr handle, usb_device_handle::get_device_list(vid, pid)) { //extract the firmware path for the b200 std::string b200_fw_image; try{ b200_fw_image = hint.get("fw", B200_FW_FILE_NAME); b200_fw_image = uhd::find_image_path(b200_fw_image, STR(UHD_IMAGES_DIR)); // FIXME } catch(uhd::exception &e){ UHD_MSG(warning) << e.what(); return b200_addrs; } UHD_LOG << "the firmware image: " << b200_fw_image << std::endl; usb_control::sptr control; try{control = usb_control::make(handle, 0);} catch(const uhd::exception &){continue;} //ignore claimed //check if fw was already loaded if (!(handle->firmware_loaded())) { b200_iface::make(control)->load_firmware(b200_fw_image); } found++; } const boost::system_time timeout_time = boost::get_system_time() + REENUMERATION_TIMEOUT_MS; //search for the device until found or timeout while (boost::get_system_time() < timeout_time and b200_addrs.empty() and found != 0) { BOOST_FOREACH(usb_device_handle::sptr handle, usb_device_handle::get_device_list(vid, pid)) { usb_control::sptr control; try{control = usb_control::make(handle, 0);} catch(const uhd::exception &){continue;} //ignore claimed b200_iface::sptr iface = b200_iface::make(control); const mboard_eeprom_t mb_eeprom = mboard_eeprom_t(*iface, "B200"); device_addr_t new_addr; new_addr["type"] = "b200"; new_addr["name"] = mb_eeprom["name"]; new_addr["serial"] = handle->get_serial(); if (not mb_eeprom["product"].empty()) { switch (boost::lexical_cast(mb_eeprom["product"])) { case 0x0001: case 0x7737: new_addr["product"] = "B200"; break; case 0x7738: case 0x0002: new_addr["product"] = "B210"; break; default: UHD_MSG(error) << "B200 unknown product code: " << mb_eeprom["product"] << std::endl; } } //this is a found b200 when the hint serial and name match or blank if ( (not hint.has_key("name") or hint["name"] == new_addr["name"]) and (not hint.has_key("serial") or hint["serial"] == new_addr["serial"]) ){ b200_addrs.push_back(new_addr); } } } return b200_addrs; } /*********************************************************************** * Make **********************************************************************/ static device::sptr b200_make(const device_addr_t &device_addr) { return device::sptr(new b200_impl(device_addr)); } UHD_STATIC_BLOCK(register_b200_device) { device::register_device(&b200_find, &b200_make, device::USRP); } /*********************************************************************** * Structors **********************************************************************/ b200_impl::b200_impl(const device_addr_t &device_addr) { _tree = property_tree::make(); _type = device::USRP; const fs_path mb_path = "/mboards/0"; //try to match the given device address with something on the USB bus boost::uint16_t vid = B200_VENDOR_ID; boost::uint16_t pid = B200_PRODUCT_ID; if (device_addr.has_key("vid")) vid = uhd::cast::hexstr_cast(device_addr.get("vid")); if (device_addr.has_key("pid")) pid = uhd::cast::hexstr_cast(device_addr.get("pid")); std::vector device_list = usb_device_handle::get_device_list(vid, pid); //locate the matching handle in the device list usb_device_handle::sptr handle; BOOST_FOREACH(usb_device_handle::sptr dev_handle, device_list) { if (dev_handle->get_serial() == device_addr["serial"]){ handle = dev_handle; break; } } UHD_ASSERT_THROW(handle.get() != NULL); //better be found //create control objects usb_control::sptr control = usb_control::make(handle, 0); _iface = b200_iface::make(control); this->check_fw_compat(); //check after making //////////////////////////////////////////////////////////////////// // setup the mboard eeprom //////////////////////////////////////////////////////////////////// const mboard_eeprom_t mb_eeprom(*_iface, "B200"); _tree->create(mb_path / "eeprom") .set(mb_eeprom) .subscribe(boost::bind(&b200_impl::set_mb_eeprom, this, _1)); //////////////////////////////////////////////////////////////////// // Load the FPGA image, then reset GPIF //////////////////////////////////////////////////////////////////// std::string default_file_name; std::string product_name = "B200?"; if (not mb_eeprom["product"].empty()) { switch (boost::lexical_cast(mb_eeprom["product"])) { case 0x0001: case 0x7737: product_name = "B200"; default_file_name = B200_FPGA_FILE_NAME; break; case 0x7738: case 0x0002: product_name = "B210"; default_file_name = B210_FPGA_FILE_NAME; break; default: UHD_MSG(error) << "B200 unknown product code: " << mb_eeprom["product"] << std::endl; } } if (default_file_name.empty()) { UHD_ASSERT_THROW(device_addr.has_key("fpga")); } //extract the FPGA path for the B200 std::string b200_fpga_image = find_image_path( device_addr.has_key("fpga")? device_addr["fpga"] : default_file_name ); boost::uint32_t status = _iface->load_fpga(b200_fpga_image); if(status != 0) { throw uhd::runtime_error(str(boost::format("fx3 is in state %1%") % status)); } _iface->reset_gpif(); //////////////////////////////////////////////////////////////////// // Create control transport //////////////////////////////////////////////////////////////////// boost::uint8_t usb_speed = _iface->get_usb_speed(); UHD_MSG(status) << "Operating over USB " << (int) usb_speed << "." << std::endl; const std::string min_frame_size = (usb_speed == 3) ? "1024" : "512"; device_addr_t ctrl_xport_args; ctrl_xport_args["recv_frame_size"] = min_frame_size; ctrl_xport_args["num_recv_frames"] = "16"; ctrl_xport_args["send_frame_size"] = min_frame_size; ctrl_xport_args["num_send_frames"] = "16"; _ctrl_transport = usb_zero_copy::make( handle, 4, 8, //interface, endpoint 3, 4, //interface, endpoint ctrl_xport_args ); while (_ctrl_transport->get_recv_buff(0.0)){} //flush ctrl xport _tree->create(mb_path / "link_max_rate").set((usb_speed == 3) ? B200_MAX_RATE_USB3 : B200_MAX_RATE_USB2); //////////////////////////////////////////////////////////////////// // Async task structure //////////////////////////////////////////////////////////////////// _async_task_data.reset(new AsyncTaskData()); _async_task_data->async_md.reset(new async_md_type(1000/*messages deep*/)); _async_task = uhd::msg_task::make(boost::bind(&b200_impl::handle_async_task, this, _ctrl_transport, _async_task_data)); //////////////////////////////////////////////////////////////////// // Local control endpoint //////////////////////////////////////////////////////////////////// _local_ctrl = radio_ctrl_core_3000::make(false/*lilE*/, _ctrl_transport, zero_copy_if::sptr()/*null*/, B200_LOCAL_CTRL_SID); _local_ctrl->hold_task(_async_task); _async_task_data->local_ctrl = _local_ctrl; //weak this->check_fpga_compat(); /* Initialize the GPIOs, set the default bandsels to the lower range. Note * that calling update_bandsel calls update_gpio_state(). */ _gpio_state = gpio_state(); update_bandsel("RX", 800e6); update_bandsel("TX", 850e6); //////////////////////////////////////////////////////////////////// // Create the GPSDO control //////////////////////////////////////////////////////////////////// _async_task_data->gpsdo_uart = b200_uart::make(_ctrl_transport, B200_TX_GPS_UART_SID); _async_task_data->gpsdo_uart->set_baud_divider(B200_BUS_CLOCK_RATE/115200); _async_task_data->gpsdo_uart->write_uart("\n"); //cause the baud and response to be setup boost::this_thread::sleep(boost::posix_time::seconds(1)); //allow for a little propagation if ((_local_ctrl->peek32(RB32_CORE_STATUS) & 0xff) != B200_GPSDO_ST_NONE) { UHD_MSG(status) << "Detecting internal GPSDO.... " << std::flush; try { _gps = gps_ctrl::make(_async_task_data->gpsdo_uart); } catch(std::exception &e) { UHD_MSG(error) << "An error occurred making GPSDO control: " << e.what() << std::endl; } if (_gps and _gps->gps_detected()) { //UHD_MSG(status) << "found" << std::endl; BOOST_FOREACH(const std::string &name, _gps->get_sensors()) { _tree->create(mb_path / "sensors" / name) .publish(boost::bind(&gps_ctrl::get_sensor, _gps, name)); } } else { _local_ctrl->poke32(TOREG(SR_CORE_GPSDO_ST), B200_GPSDO_ST_NONE); } } //////////////////////////////////////////////////////////////////// // Initialize the properties tree //////////////////////////////////////////////////////////////////// _tree->create("/name").set("B-Series Device"); _tree->create(mb_path / "name").set(product_name); _tree->create(mb_path / "codename").set("Sasquatch"); //////////////////////////////////////////////////////////////////// // Create data transport // This happens after FPGA ctrl instantiated so any junk that might // be in the FPGAs buffers doesn't get pulled into the transport // before being cleared. //////////////////////////////////////////////////////////////////// device_addr_t data_xport_args; data_xport_args["recv_frame_size"] = device_addr.get("recv_frame_size", "8192"); data_xport_args["num_recv_frames"] = device_addr.get("num_recv_frames", "16"); data_xport_args["send_frame_size"] = device_addr.get("send_frame_size", "8192"); data_xport_args["num_send_frames"] = device_addr.get("num_send_frames", "16"); _data_transport = usb_zero_copy::make( handle, // identifier 2, 6, // IN interface, endpoint 1, 2, // OUT interface, endpoint data_xport_args // param hints ); while (_data_transport->get_recv_buff(0.0)){} //flush ctrl xport _demux = recv_packet_demuxer_3000::make(_data_transport); //////////////////////////////////////////////////////////////////// // create time and clock control objects //////////////////////////////////////////////////////////////////// _spi_iface = b200_local_spi_core::make(_local_ctrl); _adf4001_iface = boost::make_shared(_spi_iface); //////////////////////////////////////////////////////////////////// // Init codec - turns on clocks //////////////////////////////////////////////////////////////////// UHD_MSG(status) << "Initialize CODEC control..." << std::endl; ad9361_params::sptr client_settings = boost::make_shared(); _codec_ctrl = ad9361_ctrl::make_spi(client_settings, _spi_iface, AD9361_SLAVENO); this->reset_codec_dcm(); //////////////////////////////////////////////////////////////////// // create codec control objects //////////////////////////////////////////////////////////////////// { const fs_path codec_path = mb_path / ("rx_codecs") / "A"; _tree->create(codec_path / "name").set(product_name+" RX dual ADC"); _tree->create(codec_path / "gains"); //empty cuz gains are in frontend } { const fs_path codec_path = mb_path / ("tx_codecs") / "A"; _tree->create(codec_path / "name").set(product_name+" TX dual DAC"); _tree->create(codec_path / "gains"); //empty cuz gains are in frontend } //////////////////////////////////////////////////////////////////// // create clock control objects //////////////////////////////////////////////////////////////////// _tree->create(mb_path / "tick_rate") .coerce(boost::bind(&b200_impl::set_tick_rate, this, _1)) .publish(boost::bind(&b200_impl::get_tick_rate, this)) .subscribe(boost::bind(&b200_impl::update_tick_rate, this, _1)); _tree->create(mb_path / "time" / "cmd"); //////////////////////////////////////////////////////////////////// // and do the misc mboard sensors //////////////////////////////////////////////////////////////////// _tree->create(mb_path / "sensors" / "ref_locked") .publish(boost::bind(&b200_impl::get_ref_locked, this)); //////////////////////////////////////////////////////////////////// // create frontend mapping //////////////////////////////////////////////////////////////////// std::vector default_map(2, 0); default_map[1] = 1; // Set this to A->0 B->1 even if there's only A _tree->create >(mb_path / "rx_chan_dsp_mapping").set(default_map); _tree->create >(mb_path / "tx_chan_dsp_mapping").set(default_map); _tree->create(mb_path / "rx_subdev_spec") .set(subdev_spec_t()) .subscribe(boost::bind(&b200_impl::update_subdev_spec, this, "rx", _1)); _tree->create(mb_path / "tx_subdev_spec") .set(subdev_spec_t()) .subscribe(boost::bind(&b200_impl::update_subdev_spec, this, "tx", _1)); //////////////////////////////////////////////////////////////////// // setup radio control //////////////////////////////////////////////////////////////////// UHD_MSG(status) << "Initialize Radio control..." << std::endl; const size_t num_radio_chains = ((_local_ctrl->peek32(RB32_CORE_STATUS) >> 8) & 0xff); UHD_ASSERT_THROW(num_radio_chains > 0); UHD_ASSERT_THROW(num_radio_chains <= 2); _radio_perifs.resize(num_radio_chains); for (size_t i = 0; i < _radio_perifs.size(); i++) this->setup_radio(i); //now test each radio module's connection to the codec interface _codec_ctrl->data_port_loopback(true); BOOST_FOREACH(radio_perifs_t &perif, _radio_perifs) { this->codec_loopback_self_test(perif.ctrl); } _codec_ctrl->data_port_loopback(false); //register time now and pps onto available radio cores _tree->create(mb_path / "time" / "now") .publish(boost::bind(&time_core_3000::get_time_now, _radio_perifs[0].time64)); _tree->create(mb_path / "time" / "pps") .publish(boost::bind(&time_core_3000::get_time_last_pps, _radio_perifs[0].time64)); for (size_t i = 0; i < _radio_perifs.size(); i++) { _tree->access(mb_path / "time" / "now") .subscribe(boost::bind(&time_core_3000::set_time_now, _radio_perifs[i].time64, _1)); _tree->access(mb_path / "time" / "pps") .subscribe(boost::bind(&time_core_3000::set_time_next_pps, _radio_perifs[i].time64, _1)); } //setup time source props _tree->create(mb_path / "time_source" / "value") .subscribe(boost::bind(&b200_impl::update_time_source, this, _1)); static const std::vector time_sources = boost::assign::list_of("none")("internal")("external")("gpsdo"); _tree->create >(mb_path / "time_source" / "options").set(time_sources); //setup reference source props _tree->create(mb_path / "clock_source" / "value") .subscribe(boost::bind(&b200_impl::update_clock_source, this, _1)); static const std::vector clock_sources = boost::assign::list_of("internal")("external")("gpsdo"); _tree->create >(mb_path / "clock_source" / "options").set(clock_sources); //////////////////////////////////////////////////////////////////// // dboard eeproms but not really //////////////////////////////////////////////////////////////////// dboard_eeprom_t db_eeprom; _tree->create(mb_path / "dboards" / "A" / "rx_eeprom").set(db_eeprom); _tree->create(mb_path / "dboards" / "A" / "tx_eeprom").set(db_eeprom); _tree->create(mb_path / "dboards" / "A" / "gdb_eeprom").set(db_eeprom); //////////////////////////////////////////////////////////////////// // do some post-init tasks //////////////////////////////////////////////////////////////////// //init the clock rate to something reasonable _tree->access(mb_path / "tick_rate").set( device_addr.cast("master_clock_rate", B200_DEFAULT_TICK_RATE)); //subdev spec contains full width of selections subdev_spec_t rx_spec, tx_spec; BOOST_FOREACH(const std::string &fe, _tree->list(mb_path / "dboards" / "A" / "rx_frontends")) { rx_spec.push_back(subdev_spec_pair_t("A", fe)); } BOOST_FOREACH(const std::string &fe, _tree->list(mb_path / "dboards" / "A" / "tx_frontends")) { tx_spec.push_back(subdev_spec_pair_t("A", fe)); } _tree->access(mb_path / "rx_subdev_spec").set(rx_spec); _tree->access(mb_path / "tx_subdev_spec").set(tx_spec); //init to internal clock and time source _tree->access(mb_path / "clock_source/value").set("internal"); _tree->access(mb_path / "time_source/value").set("none"); // Set default rates (can't be done in setup_radio() because tick rate is not yet set) for (size_t i = 0; i < _radio_perifs.size(); i++) { _tree->access(mb_path / "rx_dsps" / str(boost::format("%u") % i)/ "rate/value").set(B200_DEFAULT_RATE); _tree->access(mb_path / "tx_dsps" / str(boost::format("%u") % i) / "rate/value").set(B200_DEFAULT_RATE); } //GPS installed: use external ref, time, and init time spec if (_gps and _gps->gps_detected()) { UHD_MSG(status) << "Setting references to the internal GPSDO" << std::endl; _tree->access(mb_path / "time_source" / "value").set("gpsdo"); _tree->access(mb_path / "clock_source" / "value").set("gpsdo"); UHD_MSG(status) << "Initializing time to the internal GPSDO" << std::endl; const time_t tp = time_t(_gps->get_sensor("gps_time").to_int()+1); _tree->access(mb_path / "time" / "pps").set(time_spec_t(tp)); } else { //init to internal clock and time source _tree->access(mb_path / "clock_source/value").set("internal"); _tree->access(mb_path / "time_source/value").set("internal"); } } b200_impl::~b200_impl(void) { UHD_SAFE_CALL ( _async_task.reset(); ) } /*********************************************************************** * setup radio control objects **********************************************************************/ void b200_impl::setup_radio(const size_t dspno) { radio_perifs_t &perif = _radio_perifs[dspno]; const fs_path mb_path = "/mboards/0"; //////////////////////////////////////////////////////////////////// // radio control //////////////////////////////////////////////////////////////////// const boost::uint32_t sid = (dspno == 0)? B200_CTRL0_MSG_SID : B200_CTRL1_MSG_SID; perif.ctrl = radio_ctrl_core_3000::make(false/*lilE*/, _ctrl_transport, zero_copy_if::sptr()/*null*/, sid); perif.ctrl->hold_task(_async_task); _async_task_data->radio_ctrl[dspno] = perif.ctrl; //weak _tree->access(mb_path / "time" / "cmd") .subscribe(boost::bind(&radio_ctrl_core_3000::set_time, perif.ctrl, _1)); _tree->access(mb_path / "tick_rate") .subscribe(boost::bind(&radio_ctrl_core_3000::set_tick_rate, perif.ctrl, _1)); this->register_loopback_self_test(perif.ctrl); perif.atr = gpio_core_200_32wo::make(perif.ctrl, TOREG(SR_ATR)); //////////////////////////////////////////////////////////////////// // create rx dsp control objects //////////////////////////////////////////////////////////////////// perif.framer = rx_vita_core_3000::make(perif.ctrl, TOREG(SR_RX_CTRL)); perif.ddc = rx_dsp_core_3000::make(perif.ctrl, TOREG(SR_RX_DSP), true /*is_b200?*/); perif.ddc->set_link_rate(10e9/8); //whatever perif.ddc->set_mux("IQ", false, dspno == 1 ? true : false, dspno == 1 ? true : false); _tree->access(mb_path / "tick_rate") .subscribe(boost::bind(&rx_vita_core_3000::set_tick_rate, perif.framer, _1)) .subscribe(boost::bind(&rx_dsp_core_3000::set_tick_rate, perif.ddc, _1)); const fs_path rx_dsp_path = mb_path / "rx_dsps" / str(boost::format("%u") % dspno); _tree->create(rx_dsp_path / "rate" / "range") .publish(boost::bind(&rx_dsp_core_3000::get_host_rates, perif.ddc)); _tree->create(rx_dsp_path / "rate" / "value") .coerce(boost::bind(&rx_dsp_core_3000::set_host_rate, perif.ddc, _1)) .subscribe(boost::bind(&b200_impl::update_rx_samp_rate, this, dspno, _1)) .set(0.0); // Can only set this after tick rate is initialized. _tree->create(rx_dsp_path / "freq" / "value") .coerce(boost::bind(&rx_dsp_core_3000::set_freq, perif.ddc, _1)) .set(0.0); _tree->create(rx_dsp_path / "freq" / "range") .publish(boost::bind(&rx_dsp_core_3000::get_freq_range, perif.ddc)); _tree->create(rx_dsp_path / "stream_cmd") .subscribe(boost::bind(&rx_vita_core_3000::issue_stream_command, perif.framer, _1)); //////////////////////////////////////////////////////////////////// // create tx dsp control objects //////////////////////////////////////////////////////////////////// perif.deframer = tx_vita_core_3000::make(perif.ctrl, TOREG(SR_TX_CTRL)); perif.duc = tx_dsp_core_3000::make(perif.ctrl, TOREG(SR_TX_DSP)); perif.duc->set_link_rate(10e9/8); //whatever _tree->access(mb_path / "tick_rate") .subscribe(boost::bind(&tx_vita_core_3000::set_tick_rate, perif.deframer, _1)) .subscribe(boost::bind(&tx_dsp_core_3000::set_tick_rate, perif.duc, _1)); const fs_path tx_dsp_path = mb_path / "tx_dsps" / str(boost::format("%u") % dspno); _tree->create(tx_dsp_path / "rate" / "range") .publish(boost::bind(&tx_dsp_core_3000::get_host_rates, perif.duc)); _tree->create(tx_dsp_path / "rate" / "value") .coerce(boost::bind(&tx_dsp_core_3000::set_host_rate, perif.duc, _1)) .subscribe(boost::bind(&b200_impl::update_tx_samp_rate, this, dspno, _1)) .set(0.0); // Can only set this after tick rate is initialized. _tree->create(tx_dsp_path / "freq" / "value") .coerce(boost::bind(&tx_dsp_core_3000::set_freq, perif.duc, _1)) .set(0.0); _tree->create(tx_dsp_path / "freq" / "range") .publish(boost::bind(&tx_dsp_core_3000::get_freq_range, perif.duc)); //////////////////////////////////////////////////////////////////// // create time control objects //////////////////////////////////////////////////////////////////// time_core_3000::readback_bases_type time64_rb_bases; time64_rb_bases.rb_now = RB64_TIME_NOW; time64_rb_bases.rb_pps = RB64_TIME_PPS; perif.time64 = time_core_3000::make(perif.ctrl, TOREG(SR_TIME), time64_rb_bases); //////////////////////////////////////////////////////////////////// // create RF frontend interfacing //////////////////////////////////////////////////////////////////// for(size_t direction = 0; direction < 2; direction++) { const std::string x = direction? "rx" : "tx"; const std::string key = std::string((direction? "RX" : "TX")) + std::string(((dspno == FE1)? "1" : "2")); const fs_path rf_fe_path = mb_path / "dboards" / "A" / (x+"_frontends") / (dspno? "B" : "A"); _tree->create(rf_fe_path / "name").set("FE-"+key); _tree->create(rf_fe_path / "sensors"); _tree->create(rf_fe_path / "sensors" / "lo_locked") .publish(boost::bind(&b200_impl::get_fe_pll_locked, this, x == "tx")); BOOST_FOREACH(const std::string &name, ad9361_ctrl::get_gain_names(key)) { _tree->create(rf_fe_path / "gains" / name / "range") .set(ad9361_ctrl::get_gain_range(key)); _tree->create(rf_fe_path / "gains" / name / "value") .coerce(boost::bind(&ad9361_ctrl::set_gain, _codec_ctrl, key, _1)) .set(x == "rx" ? B200_DEFAULT_RX_GAIN : B200_DEFAULT_TX_GAIN); } _tree->create(rf_fe_path / "connection").set("IQ"); _tree->create(rf_fe_path / "enabled").set(true); _tree->create(rf_fe_path / "use_lo_offset").set(false); _tree->create(rf_fe_path / "bandwidth" / "value") .coerce(boost::bind(&ad9361_ctrl::set_bw_filter, _codec_ctrl, key, _1)) .set(40e6); _tree->create(rf_fe_path / "bandwidth" / "range") .publish(boost::bind(&ad9361_ctrl::get_bw_filter_range, key)); _tree->create(rf_fe_path / "freq" / "value") .coerce(boost::bind(&ad9361_ctrl::tune, _codec_ctrl, key, _1)) .subscribe(boost::bind(&b200_impl::update_bandsel, this, key, _1)) .set(B200_DEFAULT_FREQ); _tree->create(rf_fe_path / "freq" / "range") .publish(boost::bind(&ad9361_ctrl::get_rf_freq_range)); //setup RX related stuff if (key[0] == 'R') { static const std::vector ants = boost::assign::list_of("TX/RX")("RX2"); _tree->create >(rf_fe_path / "antenna" / "options").set(ants); _tree->create(rf_fe_path / "antenna" / "value") .subscribe(boost::bind(&b200_impl::update_antenna_sel, this, dspno, _1)) .set("RX2"); _tree->create(rf_fe_path / "sensors" / "rssi") .publish(boost::bind(&ad9361_ctrl::get_rssi, _codec_ctrl, key)); } if (key[0] == 'T') { static const std::vector ants(1, "TX/RX"); _tree->create >(rf_fe_path / "antenna" / "options").set(ants); _tree->create(rf_fe_path / "antenna" / "value").set("TX/RX"); } } } /*********************************************************************** * loopback tests **********************************************************************/ void b200_impl::register_loopback_self_test(wb_iface::sptr iface) { bool test_fail = false; UHD_MSG(status) << "Performing register loopback test... " << std::flush; size_t hash = time(NULL); for (size_t i = 0; i < 100; i++) { boost::hash_combine(hash, i); iface->poke32(TOREG(SR_TEST), boost::uint32_t(hash)); test_fail = iface->peek32(RB32_TEST) != boost::uint32_t(hash); if (test_fail) break; //exit loop on any failure } UHD_MSG(status) << ((test_fail)? "fail" : "pass") << std::endl; } void b200_impl::codec_loopback_self_test(wb_iface::sptr iface) { bool test_fail = false; UHD_MSG(status) << "Performing CODEC loopback test... " << std::flush; size_t hash = size_t(time(NULL)); for (size_t i = 0; i < 100; i++) { boost::hash_combine(hash, i); const boost::uint32_t word32 = boost::uint32_t(hash) & 0xfff0fff0; iface->poke32(TOREG(SR_CODEC_IDLE), word32); iface->peek64(RB64_CODEC_READBACK); //enough idleness for loopback to propagate const boost::uint64_t rb_word64 = iface->peek64(RB64_CODEC_READBACK); const boost::uint32_t rb_tx = boost::uint32_t(rb_word64 >> 32); const boost::uint32_t rb_rx = boost::uint32_t(rb_word64 & 0xffffffff); test_fail = word32 != rb_tx or word32 != rb_rx; if (test_fail) break; //exit loop on any failure } UHD_MSG(status) << ((test_fail)? "fail" : "pass") << std::endl; /* Zero out the idle data. */ iface->poke32(TOREG(SR_CODEC_IDLE), 0); } /*********************************************************************** * Sample and tick rate comprehension below **********************************************************************/ void b200_impl::enforce_tick_rate_limits(size_t chan_count, double tick_rate, const char* direction /*= NULL*/) { const size_t max_chans = 2; if (chan_count > max_chans) { throw uhd::value_error(boost::str( boost::format("cannot not setup %d %s channels (maximum is %d)") % chan_count % (direction ? direction : "data") % max_chans )); } else { const double max_tick_rate = ad9361_device_t::AD9361_MAX_CLOCK_RATE / ((chan_count <= 1) ? 1 : 2); if (tick_rate - max_tick_rate >= 1.0) { throw uhd::value_error(boost::str( boost::format("current master clock rate (%.6f MHz) exceeds maximum possible master clock rate (%.6f MHz) when using %d %s channels") % (tick_rate/1e6) % (max_tick_rate/1e6) % chan_count % (direction ? direction : "data") )); } } } double b200_impl::set_tick_rate(const double rate) { UHD_MSG(status) << (boost::format("Asking for clock rate %.6f MHz\n") % (rate/1e6)); check_tick_rate_with_current_streamers(rate); // Defined in b200_io_impl.cpp _tick_rate = _codec_ctrl->set_clock_rate(rate); UHD_MSG(status) << (boost::format("Actually got clock rate %.6f MHz\n") % (_tick_rate/1e6)); //reset after clock rate change this->reset_codec_dcm(); BOOST_FOREACH(radio_perifs_t &perif, _radio_perifs) { perif.time64->set_tick_rate(_tick_rate); perif.time64->self_test(); } return _tick_rate; } /*********************************************************************** * compat checks **********************************************************************/ void b200_impl::check_fw_compat(void) { boost::uint16_t compat_num = _iface->get_compat_num(); boost::uint32_t compat_major = (boost::uint32_t) (compat_num >> 8); boost::uint32_t compat_minor = (boost::uint32_t) (compat_num & 0xFF); if (compat_major != B200_FW_COMPAT_NUM_MAJOR){ throw uhd::runtime_error(str(boost::format( "Expected firmware compatibility number %d.%d, but got %d.%d:\n" "The firmware build is not compatible with the host code build.\n" "%s" ) % int(B200_FW_COMPAT_NUM_MAJOR) % int(B200_FW_COMPAT_NUM_MINOR) % compat_major % compat_minor % print_utility_error("uhd_images_downloader.py"))); } _tree->create("/mboards/0/fw_version").set(str(boost::format("%u.%u") % compat_major % compat_minor)); } void b200_impl::check_fpga_compat(void) { const boost::uint64_t compat = _local_ctrl->peek64(0); const boost::uint32_t signature = boost::uint32_t(compat >> 32); const boost::uint16_t compat_major = boost::uint16_t(compat >> 16); const boost::uint16_t compat_minor = boost::uint16_t(compat & 0xffff); if (signature != 0xACE0BA5E) throw uhd::runtime_error( "b200::check_fpga_compat signature register readback failed"); if (compat_major != B200_FPGA_COMPAT_NUM){ throw uhd::runtime_error(str(boost::format( "Expected FPGA compatibility number %d, but got %d:\n" "The FPGA build is not compatible with the host code build.\n" "%s" ) % int(B200_FPGA_COMPAT_NUM) % compat_major % print_utility_error("uhd_images_downloader.py"))); } _tree->create("/mboards/0/fpga_version").set(str(boost::format("%u.%u") % compat_major % compat_minor)); } void b200_impl::set_mb_eeprom(const uhd::usrp::mboard_eeprom_t &mb_eeprom) { mb_eeprom.commit(*_iface, "B200"); } /*********************************************************************** * Reference time and clock **********************************************************************/ void b200_impl::update_clock_source(const std::string &source) { // present the PLL with a valid 10 MHz signal before switching its reference _gpio_state.ref_sel = (source == "gpsdo")? 1 : 0; this->update_gpio_state(); if (source == "internal"){ _adf4001_iface->set_lock_to_ext_ref(false); } else if ((source == "external") or (source == "gpsdo")){ _adf4001_iface->set_lock_to_ext_ref(true); } else { throw uhd::key_error("update_clock_source: unknown source: " + source); } } void b200_impl::update_time_source(const std::string &source) { boost::uint32_t value = 0; if (source == "none") value = 3; else if (source == "internal") value = 2; else if (source == "external") value = 1; else if (source == "gpsdo") value = 0; else throw uhd::key_error("update_time_source: unknown source: " + source); _local_ctrl->poke32(TOREG(SR_CORE_PPS_SEL), value); } /*********************************************************************** * GPIO setup **********************************************************************/ void b200_impl::update_bandsel(const std::string& which, double freq) { if(which[0] == 'R') { if(freq < 2.2e9) { _gpio_state.rx_bandsel_a = 0; _gpio_state.rx_bandsel_b = 0; _gpio_state.rx_bandsel_c = 1; } else if((freq >= 2.2e9) && (freq < 4e9)) { _gpio_state.rx_bandsel_a = 0; _gpio_state.rx_bandsel_b = 1; _gpio_state.rx_bandsel_c = 0; } else if((freq >= 4e9) && (freq <= 6e9)) { _gpio_state.rx_bandsel_a = 1; _gpio_state.rx_bandsel_b = 0; _gpio_state.rx_bandsel_c = 0; } else { UHD_THROW_INVALID_CODE_PATH(); } } else if(which[0] == 'T') { if(freq < 2.5e9) { _gpio_state.tx_bandsel_a = 0; _gpio_state.tx_bandsel_b = 1; } else if((freq >= 2.5e9) && (freq <= 6e9)) { _gpio_state.tx_bandsel_a = 1; _gpio_state.tx_bandsel_b = 0; } else { UHD_THROW_INVALID_CODE_PATH(); } } else { UHD_THROW_INVALID_CODE_PATH(); } update_gpio_state(); } void b200_impl::update_gpio_state(void) { const boost::uint32_t misc_word = 0 | (_gpio_state.tx_bandsel_a << 7) | (_gpio_state.tx_bandsel_b << 6) | (_gpio_state.rx_bandsel_a << 5) | (_gpio_state.rx_bandsel_b << 4) | (_gpio_state.rx_bandsel_c << 3) | (_gpio_state.codec_arst << 2) | (_gpio_state.mimo << 1) | (_gpio_state.ref_sel << 0) ; _local_ctrl->poke32(TOREG(RB32_CORE_MISC), misc_word); } void b200_impl::reset_codec_dcm(void) { _gpio_state.codec_arst = 1; this->update_gpio_state(); boost::this_thread::sleep(boost::posix_time::milliseconds(10)); _gpio_state.codec_arst = 0; this->update_gpio_state(); } void b200_impl::update_atrs(void) { if (_radio_perifs.size() > FE1 and _radio_perifs[FE1].atr) { radio_perifs_t &perif = _radio_perifs[FE1]; const bool enb_rx = bool(perif.rx_streamer.lock()); const bool enb_tx = bool(perif.tx_streamer.lock()); const bool is_rx2 = perif.ant_rx2; const size_t rxonly = (enb_rx)? ((is_rx2)? STATE_RX1_RX2 : STATE_RX1_TXRX) : STATE_OFF; const size_t txonly = (enb_tx)? (STATE_TX1_TXRX) : STATE_OFF; size_t fd = STATE_OFF; if (enb_rx and enb_tx) fd = STATE_FDX1_TXRX; if (enb_rx and not enb_tx) fd = rxonly; if (not enb_rx and enb_tx) fd = txonly; gpio_core_200_32wo::sptr atr = perif.atr; atr->set_atr_reg(dboard_iface::ATR_REG_IDLE, STATE_OFF); atr->set_atr_reg(dboard_iface::ATR_REG_RX_ONLY, rxonly); atr->set_atr_reg(dboard_iface::ATR_REG_TX_ONLY, txonly); atr->set_atr_reg(dboard_iface::ATR_REG_FULL_DUPLEX, fd); } if (_radio_perifs.size() > FE2 and _radio_perifs[FE2].atr) { radio_perifs_t &perif = _radio_perifs[FE2]; const bool enb_rx = bool(perif.rx_streamer.lock()); const bool enb_tx = bool(perif.tx_streamer.lock()); const bool is_rx2 = perif.ant_rx2; const size_t rxonly = (enb_rx)? ((is_rx2)? STATE_RX2_RX2 : STATE_RX2_TXRX) : STATE_OFF; const size_t txonly = (enb_tx)? (STATE_TX2_TXRX) : STATE_OFF; size_t fd = STATE_OFF; if (enb_rx and enb_tx) fd = STATE_FDX2_TXRX; if (enb_rx and not enb_tx) fd = rxonly; if (not enb_rx and enb_tx) fd = txonly; gpio_core_200_32wo::sptr atr = perif.atr; atr->set_atr_reg(dboard_iface::ATR_REG_IDLE, STATE_OFF); atr->set_atr_reg(dboard_iface::ATR_REG_RX_ONLY, rxonly); atr->set_atr_reg(dboard_iface::ATR_REG_TX_ONLY, txonly); atr->set_atr_reg(dboard_iface::ATR_REG_FULL_DUPLEX, fd); } } void b200_impl::update_antenna_sel(const size_t which, const std::string &ant) { if (ant != "TX/RX" and ant != "RX2") throw uhd::value_error("b200: unknown RX antenna option: " + ant); _radio_perifs[which].ant_rx2 = (ant == "RX2"); this->update_atrs(); } void b200_impl::update_enables(void) { //extract settings from state variables const bool enb_tx1 = (_radio_perifs.size() > FE1) and bool(_radio_perifs[FE1].tx_streamer.lock()); const bool enb_rx1 = (_radio_perifs.size() > FE1) and bool(_radio_perifs[FE1].rx_streamer.lock()); const bool enb_tx2 = (_radio_perifs.size() > FE2) and bool(_radio_perifs[FE2].tx_streamer.lock()); const bool enb_rx2 = (_radio_perifs.size() > FE2) and bool(_radio_perifs[FE2].rx_streamer.lock()); const size_t num_rx = (enb_rx1?1:0) + (enb_rx2?1:0); const size_t num_tx = (enb_tx1?1:0) + (enb_tx2?1:0); const bool mimo = num_rx == 2 or num_tx == 2; if ((num_rx + num_tx) == 3) { throw uhd::runtime_error("b200: 2 RX 1 TX and 1 RX 2 TX configurations not possible"); } //setup the active chains in the codec _codec_ctrl->set_active_chains(enb_tx1, enb_tx2, enb_rx1, enb_rx2); if ((num_rx + num_tx) == 0) _codec_ctrl->set_active_chains(true, false, true, false); //enable something this->reset_codec_dcm(); //set_active_chains could cause a clock rate change - reset dcm //figure out if mimo is enabled based on new state _gpio_state.mimo = (mimo)? 1 : 0; update_gpio_state(); //atrs change based on enables this->update_atrs(); } sensor_value_t b200_impl::get_ref_locked(void) { const bool lock = (_local_ctrl->peek32(RB32_CORE_MISC) & 0x1) == 0x1; return sensor_value_t("Ref", lock, "locked", "unlocked"); } sensor_value_t b200_impl::get_fe_pll_locked(const bool is_tx) { const boost::uint32_t st = _local_ctrl->peek32(RB32_CORE_PLL); const bool locked = is_tx ? st & 0x1 : st & 0x2; return sensor_value_t("LO", locked, "locked", "unlocked"); }