//
// Copyright 2012-2015 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "b200_impl.hpp"
#include "b200_regs.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "../../transport/libusb1_base.hpp"
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::transport;
static const boost::posix_time::milliseconds REENUMERATION_TIMEOUT_MS(3000);
// B200 + B210:
class b200_ad9361_client_t : public ad9361_params {
public:
~b200_ad9361_client_t() {}
double get_band_edge(frequency_band_t band) {
switch (band) {
case AD9361_RX_BAND0: return 2.2e9; // Port C
case AD9361_RX_BAND1: return 4.0e9; // Port B
case AD9361_TX_BAND0: return 2.5e9; // Port B
default: return 0;
}
}
clocking_mode_t get_clocking_mode() {
return AD9361_XTAL_N_CLK_PATH;
}
digital_interface_mode_t get_digital_interface_mode() {
return AD9361_DDR_FDD_LVCMOS;
}
digital_interface_delays_t get_digital_interface_timing() {
digital_interface_delays_t delays;
delays.rx_clk_delay = 0;
delays.rx_data_delay = 0xF;
delays.tx_clk_delay = 0;
delays.tx_data_delay = 0xF;
return delays;
}
};
// B205
class b205_ad9361_client_t : public ad9361_params {
public:
~b205_ad9361_client_t() {}
double get_band_edge(frequency_band_t band) {
switch (band) {
case AD9361_RX_BAND0: return 0; // Set these all to
case AD9361_RX_BAND1: return 0; // zero, so RF port A
case AD9361_TX_BAND0: return 0; // is used all the time
default: return 0; // On both Rx and Tx
}
}
clocking_mode_t get_clocking_mode() {
return AD9361_XTAL_N_CLK_PATH;
}
digital_interface_mode_t get_digital_interface_mode() {
return AD9361_DDR_FDD_LVCMOS;
}
digital_interface_delays_t get_digital_interface_timing() {
digital_interface_delays_t delays;
delays.rx_clk_delay = 0;
delays.rx_data_delay = 0xF;
delays.tx_clk_delay = 0;
delays.tx_data_delay = 0xF;
return delays;
}
};
/***********************************************************************
* Helpers
**********************************************************************/
std::string check_option_valid(
const std::string &name,
const std::vector &valid_options,
const std::string &option
) {
if (std::find(valid_options.begin(), valid_options.end(), option) == valid_options.end()) {
throw uhd::runtime_error(str(
boost::format("Invalid option chosen for: %s")
% name
));
}
return option;
}
/***********************************************************************
* Discovery
**********************************************************************/
//! Look up the type of B-Series device we're currently running.
// Throws a uhd::runtime_error if the USB PID and the product ID stored
// in the MB EEPROM are invalid,
b200_product_t get_b200_product(const usb_device_handle::sptr& handle, const mboard_eeprom_t &mb_eeprom)
{
// Try USB PID first
boost::uint16_t product_id = handle->get_product_id();
if (B2XX_PID_TO_PRODUCT.has_key(product_id))
return B2XX_PID_TO_PRODUCT[product_id];
// Try EEPROM product ID code second
if (mb_eeprom["product"].empty()) {
throw uhd::runtime_error("B200: Missing product ID on EEPROM.");
}
product_id = boost::lexical_cast(mb_eeprom["product"]);
if (not B2XX_PRODUCT_ID.has_key(product_id)) {
throw uhd::runtime_error(str(
boost::format("B200 unknown product code: 0x%04x")
% product_id
));
}
return B2XX_PRODUCT_ID[product_id];
}
std::vector get_b200_device_handles(const device_addr_t &hint)
{
std::vector vid_pid_pair_list;
if(hint.has_key("vid") && hint.has_key("pid") && hint.has_key("type") && hint["type"] == "b200") {
vid_pid_pair_list.push_back(usb_device_handle::vid_pid_pair_t(uhd::cast::hexstr_cast(hint.get("vid")),
uhd::cast::hexstr_cast(hint.get("pid"))));
} else {
vid_pid_pair_list = b200_vid_pid_pairs;
}
//find the usrps and load firmware
return usb_device_handle::get_device_list(vid_pid_pair_list);
}
static device_addrs_t b200_find(const device_addr_t &hint)
{
device_addrs_t b200_addrs;
//return an empty list of addresses when type is set to non-b200
if (hint.has_key("type") and hint["type"] != "b200") return b200_addrs;
//Return an empty list of addresses when an address or resource is specified,
//since an address and resource is intended for a different, non-USB, device.
BOOST_FOREACH(device_addr_t hint_i, separate_device_addr(hint)) {
if (hint_i.has_key("addr") || hint_i.has_key("resource")) return b200_addrs;
}
// Important note:
// The get device list calls are nested inside the for loop.
// This allows the usb guts to decontruct when not in use,
// so that re-enumeration after fw load can occur successfully.
// This requirement is a courtesy of libusb1.0 on windows.
size_t found = 0;
BOOST_FOREACH(usb_device_handle::sptr handle, get_b200_device_handles(hint)) {
//extract the firmware path for the b200
std::string b200_fw_image;
try{
b200_fw_image = hint.get("fw", B200_FW_FILE_NAME);
b200_fw_image = uhd::find_image_path(b200_fw_image, STR(UHD_IMAGES_DIR)); // FIXME
}
catch(uhd::exception &e){
UHD_MSG(warning) << e.what();
return b200_addrs;
}
UHD_LOG << "the firmware image: " << b200_fw_image << std::endl;
usb_control::sptr control;
try{control = usb_control::make(handle, 0);}
catch(const uhd::exception &){continue;} //ignore claimed
//check if fw was already loaded
if (!(handle->firmware_loaded()))
{
b200_iface::make(control)->load_firmware(b200_fw_image);
}
found++;
}
const boost::system_time timeout_time = boost::get_system_time() + REENUMERATION_TIMEOUT_MS;
//search for the device until found or timeout
while (boost::get_system_time() < timeout_time and b200_addrs.empty() and found != 0)
{
BOOST_FOREACH(usb_device_handle::sptr handle, get_b200_device_handles(hint))
{
usb_control::sptr control;
try{control = usb_control::make(handle, 0);}
catch(const uhd::exception &){continue;} //ignore claimed
b200_iface::sptr iface = b200_iface::make(control);
const mboard_eeprom_t mb_eeprom = mboard_eeprom_t(*iface, "B200");
device_addr_t new_addr;
new_addr["type"] = "b200";
new_addr["name"] = mb_eeprom["name"];
new_addr["serial"] = handle->get_serial();
try {
// Turn the 16-Bit product ID into a string representation
new_addr["product"] = B2XX_STR_NAMES[get_b200_product(handle, mb_eeprom)];
} catch (const uhd::runtime_error &) {
// No problem if this fails -- this is just device discovery, after all.
new_addr["product"] = "B2??";
}
//this is a found b200 when the hint serial and name match or blank
if (
(not hint.has_key("name") or hint["name"] == new_addr["name"]) and
(not hint.has_key("serial") or hint["serial"] == new_addr["serial"])
){
b200_addrs.push_back(new_addr);
}
}
}
return b200_addrs;
}
/***********************************************************************
* Make
**********************************************************************/
static device::sptr b200_make(const device_addr_t &device_addr)
{
uhd::transport::usb_device_handle::sptr handle;
// We try twice, because the first time, the link might be in a bad state
// and we might need to reset the link, but if that didn't help, trying
// a third time is pointless.
try {
return device::sptr(new b200_impl(device_addr, handle));
}
catch (const uhd::usb_error &) {
UHD_MSG(status) << "Detected bad USB state; resetting." << std::endl;
libusb::device_handle::sptr dev_handle(libusb::device_handle::get_cached_handle(
boost::static_pointer_cast(handle)->get_device()
));
dev_handle->clear_endpoints(B200_USB_CTRL_RECV_ENDPOINT, B200_USB_CTRL_SEND_ENDPOINT);
dev_handle->clear_endpoints(B200_USB_DATA_RECV_ENDPOINT, B200_USB_DATA_SEND_ENDPOINT);
dev_handle->reset_device();
}
return device::sptr(new b200_impl(device_addr, handle));
}
UHD_STATIC_BLOCK(register_b200_device)
{
device::register_device(&b200_find, &b200_make, device::USRP);
}
/***********************************************************************
* Structors
**********************************************************************/
b200_impl::b200_impl(const uhd::device_addr_t& device_addr, usb_device_handle::sptr &handle) :
_product(B200), // Some safe value
_revision(0),
_time_source(UNKNOWN),
_tick_rate(0.0) // Forces a clock initialization at startup
{
_tree = property_tree::make();
_type = device::USRP;
const fs_path mb_path = "/mboards/0";
//try to match the given device address with something on the USB bus
boost::uint16_t vid = B200_VENDOR_ID;
boost::uint16_t pid = B200_PRODUCT_ID;
bool specified_vid = false;
bool specified_pid = false;
if (device_addr.has_key("vid"))
{
vid = uhd::cast::hexstr_cast(device_addr.get("vid"));
specified_vid = true;
}
if (device_addr.has_key("pid"))
{
pid = uhd::cast::hexstr_cast(device_addr.get("pid"));
specified_pid = true;
}
std::vector vid_pid_pair_list;//search list for devices.
// Search only for specified VID and PID if both specified
if (specified_vid && specified_pid)
{
vid_pid_pair_list.push_back(usb_device_handle::vid_pid_pair_t(vid,pid));
}
// Search for all supported PIDs limited to specified VID if only VID specified
else if (specified_vid)
{
vid_pid_pair_list.push_back(usb_device_handle::vid_pid_pair_t(vid, B200_PRODUCT_ID));
vid_pid_pair_list.push_back(usb_device_handle::vid_pid_pair_t(vid, B205_PRODUCT_ID));
vid_pid_pair_list.push_back(usb_device_handle::vid_pid_pair_t(vid, B200_PRODUCT_NI_ID));
vid_pid_pair_list.push_back(usb_device_handle::vid_pid_pair_t(vid, B210_PRODUCT_NI_ID));
}
// Search for all supported VIDs limited to specified PID if only PID specified
else if (specified_pid)
{
vid_pid_pair_list.push_back(usb_device_handle::vid_pid_pair_t(B200_VENDOR_ID,pid));
vid_pid_pair_list.push_back(usb_device_handle::vid_pid_pair_t(B200_VENDOR_NI_ID,pid));
}
// Search for all supported devices if neither VID nor PID specified
else
{
vid_pid_pair_list.push_back(usb_device_handle::vid_pid_pair_t(B200_VENDOR_ID, B200_PRODUCT_ID));
vid_pid_pair_list.push_back(usb_device_handle::vid_pid_pair_t(B200_VENDOR_ID, B205_PRODUCT_ID));
vid_pid_pair_list.push_back(usb_device_handle::vid_pid_pair_t(B200_VENDOR_NI_ID, B200_PRODUCT_NI_ID));
vid_pid_pair_list.push_back(usb_device_handle::vid_pid_pair_t(B200_VENDOR_NI_ID, B210_PRODUCT_NI_ID));
}
std::vector device_list = usb_device_handle::get_device_list(vid_pid_pair_list);
//locate the matching handle in the device list
BOOST_FOREACH(usb_device_handle::sptr dev_handle, device_list) {
if (dev_handle->get_serial() == device_addr["serial"]){
handle = dev_handle;
break;
}
}
UHD_ASSERT_THROW(handle.get() != NULL); //better be found
//create control objects
usb_control::sptr control = usb_control::make(handle, 0);
_iface = b200_iface::make(control);
this->check_fw_compat(); //check after making
////////////////////////////////////////////////////////////////////
// setup the mboard eeprom
////////////////////////////////////////////////////////////////////
const mboard_eeprom_t mb_eeprom(*_iface, "B200");
_tree->create(mb_path / "eeprom")
.set(mb_eeprom)
.subscribe(boost::bind(&b200_impl::set_mb_eeprom, this, _1));
////////////////////////////////////////////////////////////////////
// Identify the device type
////////////////////////////////////////////////////////////////////
std::string default_file_name;
std::string product_name;
try {
// This will throw if the product ID is invalid:
_product = get_b200_product(handle, mb_eeprom);
default_file_name = B2XX_FPGA_FILE_NAME.get(_product);
product_name = B2XX_STR_NAMES.get(_product);
} catch (const uhd::runtime_error &e) {
// The only reason we may let this pass is if the user specified
// the FPGA file name:
if (not device_addr.has_key("fpga")) {
throw e;
}
// In this case, we must provide a default product name:
product_name = "B200?";
}
if (not mb_eeprom["revision"].empty()) {
_revision = boost::lexical_cast(mb_eeprom["revision"]);
}
UHD_MSG(status) << "Detected Device: " << B2XX_STR_NAMES[_product] << std::endl;
_gpsdo_capable = (_product != B205);
////////////////////////////////////////////////////////////////////
// Set up frontend mapping
////////////////////////////////////////////////////////////////////
// Explanation: The AD9361 has 2 frontends, FE1 and FE2.
// On the B210 FE1 maps to the B-side (or radio 1), and FE2 maps
// to the A-side (or radio 0). So, logically, the radios are swapped
// between the host side and the AD9361-side.
// B200 is more complicated: On Revs <= 4, the A-side is connected,
// which means FE2 is used (like B210). On Revs >= 5, the left side
// ("B-side") is connected, because these revs use an AD9364, which
// does not have an FE2, so we don't swap FEs.
// Swapped setup:
_fe1 = 1;
_fe2 = 0;
_gpio_state.swap_atr = 1;
// Unswapped setup:
if (_product == B205 or (_product == B200 and _revision >= 5)) {
_fe1 = 0; //map radio0 to FE1
_fe2 = 1; //map radio1 to FE2
_gpio_state.swap_atr = 0; // ATRs for radio0 are mapped to FE1
}
////////////////////////////////////////////////////////////////////
// Load the FPGA image, then reset GPIF
////////////////////////////////////////////////////////////////////
//extract the FPGA path for the B200
std::string b200_fpga_image = find_image_path(
device_addr.has_key("fpga")? device_addr["fpga"] : default_file_name
);
boost::uint32_t status = _iface->load_fpga(b200_fpga_image);
if(status != 0) {
throw uhd::runtime_error(str(boost::format("fx3 is in state %1%") % status));
}
_iface->reset_gpif();
////////////////////////////////////////////////////////////////////
// Create control transport
////////////////////////////////////////////////////////////////////
boost::uint8_t usb_speed = _iface->get_usb_speed();
UHD_MSG(status) << "Operating over USB " << (int) usb_speed << "." << std::endl;
const std::string min_frame_size = (usb_speed == 3) ? "1024" : "512";
device_addr_t ctrl_xport_args;
ctrl_xport_args["recv_frame_size"] = min_frame_size;
ctrl_xport_args["num_recv_frames"] = "16";
ctrl_xport_args["send_frame_size"] = min_frame_size;
ctrl_xport_args["num_send_frames"] = "16";
// This may throw a uhd::usb_error, which will be caught by b200_make().
_ctrl_transport = usb_zero_copy::make(
handle,
B200_USB_CTRL_RECV_INTERFACE, B200_USB_CTRL_RECV_ENDPOINT, //interface, endpoint
B200_USB_CTRL_SEND_INTERFACE, B200_USB_CTRL_SEND_ENDPOINT, //interface, endpoint
ctrl_xport_args
);
while (_ctrl_transport->get_recv_buff(0.0)){} //flush ctrl xport
_tree->create(mb_path / "link_max_rate").set((usb_speed == 3) ? B200_MAX_RATE_USB3 : B200_MAX_RATE_USB2);
////////////////////////////////////////////////////////////////////
// Async task structure
////////////////////////////////////////////////////////////////////
_async_task_data.reset(new AsyncTaskData());
_async_task_data->async_md.reset(new async_md_type(1000/*messages deep*/));
_async_task = uhd::msg_task::make(boost::bind(&b200_impl::handle_async_task, this, _ctrl_transport, _async_task_data));
////////////////////////////////////////////////////////////////////
// Local control endpoint
////////////////////////////////////////////////////////////////////
_local_ctrl = radio_ctrl_core_3000::make(false/*lilE*/, _ctrl_transport, zero_copy_if::sptr()/*null*/, B200_LOCAL_CTRL_SID);
_local_ctrl->hold_task(_async_task);
_async_task_data->local_ctrl = _local_ctrl; //weak
this->check_fpga_compat();
/* Initialize the GPIOs, set the default bandsels to the lower range. Note
* that calling update_bandsel calls update_gpio_state(). */
update_bandsel("RX", 800e6);
update_bandsel("TX", 850e6);
////////////////////////////////////////////////////////////////////
// Create the GPSDO control
////////////////////////////////////////////////////////////////////
if (_gpsdo_capable)
{
_async_task_data->gpsdo_uart = b200_uart::make(_ctrl_transport, B200_TX_GPS_UART_SID);
_async_task_data->gpsdo_uart->set_baud_divider(B200_BUS_CLOCK_RATE/115200);
_async_task_data->gpsdo_uart->write_uart("\n"); //cause the baud and response to be setup
boost::this_thread::sleep(boost::posix_time::seconds(1)); //allow for a little propagation
if ((_local_ctrl->peek32(RB32_CORE_STATUS) & 0xff) != B200_GPSDO_ST_NONE)
{
UHD_MSG(status) << "Detecting internal GPSDO.... " << std::flush;
try
{
_gps = gps_ctrl::make(_async_task_data->gpsdo_uart);
}
catch(std::exception &e)
{
UHD_MSG(error) << "An error occurred making GPSDO control: " << e.what() << std::endl;
}
if (_gps and _gps->gps_detected())
{
//UHD_MSG(status) << "found" << std::endl;
BOOST_FOREACH(const std::string &name, _gps->get_sensors())
{
_tree->create(mb_path / "sensors" / name)
.publish(boost::bind(&gps_ctrl::get_sensor, _gps, name));
}
}
else
{
_local_ctrl->poke32(TOREG(SR_CORE_GPSDO_ST), B200_GPSDO_ST_NONE);
}
}
}
////////////////////////////////////////////////////////////////////
// Initialize the properties tree
////////////////////////////////////////////////////////////////////
_tree->create("/name").set("B-Series Device");
_tree->create(mb_path / "name").set(product_name);
_tree->create(mb_path / "codename").set((_product == B205) ? "Pixie" : "Sasquatch");
////////////////////////////////////////////////////////////////////
// Create data transport
// This happens after FPGA ctrl instantiated so any junk that might
// be in the FPGAs buffers doesn't get pulled into the transport
// before being cleared.
////////////////////////////////////////////////////////////////////
device_addr_t data_xport_args;
data_xport_args["recv_frame_size"] = device_addr.get("recv_frame_size", "8192");
data_xport_args["num_recv_frames"] = device_addr.get("num_recv_frames", "16");
data_xport_args["send_frame_size"] = device_addr.get("send_frame_size", "8192");
data_xport_args["num_send_frames"] = device_addr.get("num_send_frames", "16");
// This may throw a uhd::usb_error, which will be caught by b200_make().
_data_transport = usb_zero_copy::make(
handle, // identifier
B200_USB_DATA_RECV_INTERFACE, B200_USB_DATA_RECV_ENDPOINT, //interface, endpoint
B200_USB_DATA_SEND_INTERFACE, B200_USB_DATA_SEND_ENDPOINT, //interface, endpoint
data_xport_args // param hints
);
while (_data_transport->get_recv_buff(0.0)){} //flush ctrl xport
_demux = recv_packet_demuxer_3000::make(_data_transport);
////////////////////////////////////////////////////////////////////
// create time and clock control objects
////////////////////////////////////////////////////////////////////
_spi_iface = b200_local_spi_core::make(_local_ctrl);
if (_product != B205) {
_adf4001_iface = boost::make_shared(_spi_iface);
}
////////////////////////////////////////////////////////////////////
// Init codec - turns on clocks
////////////////////////////////////////////////////////////////////
UHD_MSG(status) << "Initialize CODEC control..." << std::endl;
ad9361_params::sptr client_settings;
if (_product == B205) {
client_settings = boost::make_shared();
} else {
client_settings = boost::make_shared();
}
_codec_ctrl = ad9361_ctrl::make_spi(client_settings, _spi_iface, AD9361_SLAVENO);
////////////////////////////////////////////////////////////////////
// create codec control objects
////////////////////////////////////////////////////////////////////
{
const fs_path codec_path = mb_path / ("rx_codecs") / "A";
_tree->create(codec_path / "name").set(product_name+" RX dual ADC");
_tree->create(codec_path / "gains"); //empty cuz gains are in frontend
}
{
const fs_path codec_path = mb_path / ("tx_codecs") / "A";
_tree->create(codec_path / "name").set(product_name+" TX dual DAC");
_tree->create(codec_path / "gains"); //empty cuz gains are in frontend
}
////////////////////////////////////////////////////////////////////
// create clock control objects
////////////////////////////////////////////////////////////////////
_tree->create(mb_path / "tick_rate")
.coerce(boost::bind(&b200_impl::set_tick_rate, this, _1))
.publish(boost::bind(&b200_impl::get_tick_rate, this))
.subscribe(boost::bind(&b200_impl::update_tick_rate, this, _1));
_tree->create(mb_path / "time" / "cmd");
_tree->create(mb_path / "auto_tick_rate").set(false);
////////////////////////////////////////////////////////////////////
// and do the misc mboard sensors
////////////////////////////////////////////////////////////////////
_tree->create(mb_path / "sensors" / "ref_locked")
.publish(boost::bind(&b200_impl::get_ref_locked, this));
////////////////////////////////////////////////////////////////////
// create frontend mapping
////////////////////////////////////////////////////////////////////
std::vector default_map(2, 0); default_map[1] = 1; // Set this to A->0 B->1 even if there's only A
_tree->create >(mb_path / "rx_chan_dsp_mapping").set(default_map);
_tree->create >(mb_path / "tx_chan_dsp_mapping").set(default_map);
_tree->create(mb_path / "rx_subdev_spec")
.coerce(boost::bind(&b200_impl::coerce_subdev_spec, this, _1))
.set(subdev_spec_t())
.subscribe(boost::bind(&b200_impl::update_subdev_spec, this, "rx", _1));
_tree->create(mb_path / "tx_subdev_spec")
.coerce(boost::bind(&b200_impl::coerce_subdev_spec, this, _1))
.set(subdev_spec_t())
.subscribe(boost::bind(&b200_impl::update_subdev_spec, this, "tx", _1));
////////////////////////////////////////////////////////////////////
// setup radio control
////////////////////////////////////////////////////////////////////
UHD_MSG(status) << "Initialize Radio control..." << std::endl;
const size_t num_radio_chains = ((_local_ctrl->peek32(RB32_CORE_STATUS) >> 8) & 0xff);
UHD_ASSERT_THROW(num_radio_chains > 0);
UHD_ASSERT_THROW(num_radio_chains <= 2);
_radio_perifs.resize(num_radio_chains);
_codec_mgr = ad936x_manager::make(_codec_ctrl, num_radio_chains);
_codec_mgr->init_codec();
for (size_t i = 0; i < _radio_perifs.size(); i++)
this->setup_radio(i);
//now test each radio module's connection to the codec interface
BOOST_FOREACH(radio_perifs_t &perif, _radio_perifs)
{
_codec_mgr->loopback_self_test(perif.ctrl, TOREG(SR_CODEC_IDLE), RB64_CODEC_READBACK);
}
//register time now and pps onto available radio cores
_tree->create(mb_path / "time" / "now")
.publish(boost::bind(&time_core_3000::get_time_now, _radio_perifs[0].time64));
_tree->create(mb_path / "time" / "pps")
.publish(boost::bind(&time_core_3000::get_time_last_pps, _radio_perifs[0].time64));
for (size_t i = 0; i < _radio_perifs.size(); i++)
{
_tree->access(mb_path / "time" / "now")
.subscribe(boost::bind(&time_core_3000::set_time_now, _radio_perifs[i].time64, _1));
_tree->access(mb_path / "time" / "pps")
.subscribe(boost::bind(&time_core_3000::set_time_next_pps, _radio_perifs[i].time64, _1));
}
//setup time source props
static const std::vector time_sources = (_gpsdo_capable) ?
boost::assign::list_of("none")("internal")("external")("gpsdo") :
boost::assign::list_of("none")("internal")("external") ;
_tree->create >(mb_path / "time_source" / "options")
.set(time_sources);
_tree->create(mb_path / "time_source" / "value")
.coerce(boost::bind(&check_option_valid, "time source", time_sources, _1))
.subscribe(boost::bind(&b200_impl::update_time_source, this, _1));
//setup reference source props
static const std::vector clock_sources = (_gpsdo_capable) ?
boost::assign::list_of("internal")("external")("gpsdo") :
boost::assign::list_of("internal")("external") ;
_tree->create >(mb_path / "clock_source" / "options")
.set(clock_sources);
_tree->create(mb_path / "clock_source" / "value")
.coerce(boost::bind(&check_option_valid, "clock source", clock_sources, _1))
.subscribe(boost::bind(&b200_impl::update_clock_source, this, _1));
////////////////////////////////////////////////////////////////////
// front panel gpio
////////////////////////////////////////////////////////////////////
_radio_perifs[0].fp_gpio = gpio_core_200::make(_radio_perifs[0].ctrl, TOREG(SR_FP_GPIO), RB32_FP_GPIO);
BOOST_FOREACH(const gpio_attr_map_t::value_type attr, gpio_attr_map)
{
_tree->create(mb_path / "gpio" / "FP0" / attr.second)
.set(0)
.subscribe(boost::bind(&b200_impl::set_fp_gpio, this, _radio_perifs[0].fp_gpio, attr.first, _1));
}
_tree->create(mb_path / "gpio" / "FP0" / "READBACK")
.publish(boost::bind(&b200_impl::get_fp_gpio, this, _radio_perifs[0].fp_gpio));
////////////////////////////////////////////////////////////////////
// dboard eeproms but not really
////////////////////////////////////////////////////////////////////
dboard_eeprom_t db_eeprom;
_tree->create(mb_path / "dboards" / "A" / "rx_eeprom").set(db_eeprom);
_tree->create(mb_path / "dboards" / "A" / "tx_eeprom").set(db_eeprom);
_tree->create(mb_path / "dboards" / "A" / "gdb_eeprom").set(db_eeprom);
////////////////////////////////////////////////////////////////////
// do some post-init tasks
////////////////////////////////////////////////////////////////////
//init the clock rate to something reasonable
double default_tick_rate = device_addr.cast("master_clock_rate", ad936x_manager::DEFAULT_TICK_RATE);
_tree->access(mb_path / "tick_rate").set(default_tick_rate);
//subdev spec contains full width of selections
subdev_spec_t rx_spec, tx_spec;
BOOST_FOREACH(const std::string &fe, _tree->list(mb_path / "dboards" / "A" / "rx_frontends"))
{
rx_spec.push_back(subdev_spec_pair_t("A", fe));
}
BOOST_FOREACH(const std::string &fe, _tree->list(mb_path / "dboards" / "A" / "tx_frontends"))
{
tx_spec.push_back(subdev_spec_pair_t("A", fe));
}
_tree->access(mb_path / "rx_subdev_spec").set(rx_spec);
_tree->access(mb_path / "tx_subdev_spec").set(tx_spec);
//init to internal clock and time source
_tree->access(mb_path / "clock_source/value").set("internal");
_tree->access(mb_path / "time_source/value").set("internal");
// Set the DSP chains to some safe value
for (size_t i = 0; i < _radio_perifs.size(); i++) {
_radio_perifs[i].ddc->set_host_rate(default_tick_rate / ad936x_manager::DEFAULT_DECIM);
_radio_perifs[i].duc->set_host_rate(default_tick_rate / ad936x_manager::DEFAULT_INTERP);
}
// We can automatically choose a master clock rate, but not if the user specifies one
_tree->access(mb_path / "auto_tick_rate").set(not device_addr.has_key("master_clock_rate"));
if (not device_addr.has_key("master_clock_rate")) {
UHD_MSG(status) << "Setting master clock rate selection to 'automatic'." << std::endl;
}
}
b200_impl::~b200_impl(void)
{
UHD_SAFE_CALL
(
_async_task.reset();
)
}
/***********************************************************************
* setup radio control objects
**********************************************************************/
void b200_impl::setup_radio(const size_t dspno)
{
radio_perifs_t &perif = _radio_perifs[dspno];
const fs_path mb_path = "/mboards/0";
////////////////////////////////////////////////////////////////////
// Set up transport
////////////////////////////////////////////////////////////////////
const boost::uint32_t sid = (dspno == 0) ? B200_CTRL0_MSG_SID : B200_CTRL1_MSG_SID;
////////////////////////////////////////////////////////////////////
// radio control
////////////////////////////////////////////////////////////////////
perif.ctrl = radio_ctrl_core_3000::make(
false/*lilE*/,
_ctrl_transport,
zero_copy_if::sptr()/*null*/,
sid);
perif.ctrl->hold_task(_async_task);
_async_task_data->radio_ctrl[dspno] = perif.ctrl; //weak
_tree->access(mb_path / "time" / "cmd")
.subscribe(boost::bind(&radio_ctrl_core_3000::set_time, perif.ctrl, _1));
_tree->access(mb_path / "tick_rate")
.subscribe(boost::bind(&radio_ctrl_core_3000::set_tick_rate, perif.ctrl, _1));
this->register_loopback_self_test(perif.ctrl);
////////////////////////////////////////////////////////////////////
// Set up peripherals
////////////////////////////////////////////////////////////////////
perif.atr = gpio_core_200_32wo::make(perif.ctrl, TOREG(SR_ATR));
// create rx dsp control objects
perif.framer = rx_vita_core_3000::make(perif.ctrl, TOREG(SR_RX_CTRL));
perif.ddc = rx_dsp_core_3000::make(perif.ctrl, TOREG(SR_RX_DSP), true /*is_b200?*/);
perif.ddc->set_link_rate(10e9/8); //whatever
perif.ddc->set_mux("IQ", false, dspno == 1 ? true : false, dspno == 1 ? true : false);
perif.ddc->set_freq(rx_dsp_core_3000::DEFAULT_CORDIC_FREQ);
perif.deframer = tx_vita_core_3000::make(perif.ctrl, TOREG(SR_TX_CTRL));
perif.duc = tx_dsp_core_3000::make(perif.ctrl, TOREG(SR_TX_DSP));
perif.duc->set_link_rate(10e9/8); //whatever
perif.duc->set_freq(tx_dsp_core_3000::DEFAULT_CORDIC_FREQ);
////////////////////////////////////////////////////////////////////
// create time control objects
////////////////////////////////////////////////////////////////////
time_core_3000::readback_bases_type time64_rb_bases;
time64_rb_bases.rb_now = RB64_TIME_NOW;
time64_rb_bases.rb_pps = RB64_TIME_PPS;
perif.time64 = time_core_3000::make(perif.ctrl, TOREG(SR_TIME), time64_rb_bases);
////////////////////////////////////////////////////////////////////
// connect rx dsp control objects
////////////////////////////////////////////////////////////////////
_tree->access(mb_path / "tick_rate")
.subscribe(boost::bind(&rx_vita_core_3000::set_tick_rate, perif.framer, _1))
.subscribe(boost::bind(&rx_dsp_core_3000::set_tick_rate, perif.ddc, _1));
const fs_path rx_dsp_path = mb_path / "rx_dsps" / dspno;
perif.ddc->populate_subtree(_tree->subtree(rx_dsp_path));
_tree->access(rx_dsp_path / "rate" / "value")
.coerce(boost::bind(&b200_impl::coerce_rx_samp_rate, this, perif.ddc, dspno, _1))
.subscribe(boost::bind(&b200_impl::update_rx_samp_rate, this, dspno, _1))
;
_tree->create(rx_dsp_path / "stream_cmd")
.subscribe(boost::bind(&rx_vita_core_3000::issue_stream_command, perif.framer, _1));
////////////////////////////////////////////////////////////////////
// create tx dsp control objects
////////////////////////////////////////////////////////////////////
_tree->access(mb_path / "tick_rate")
.subscribe(boost::bind(&tx_vita_core_3000::set_tick_rate, perif.deframer, _1))
.subscribe(boost::bind(&tx_dsp_core_3000::set_tick_rate, perif.duc, _1));
const fs_path tx_dsp_path = mb_path / "tx_dsps" / dspno;
perif.duc->populate_subtree(_tree->subtree(tx_dsp_path));
_tree->access(tx_dsp_path / "rate" / "value")
.coerce(boost::bind(&b200_impl::coerce_tx_samp_rate, this, perif.duc, dspno, _1))
.subscribe(boost::bind(&b200_impl::update_tx_samp_rate, this, dspno, _1))
;
////////////////////////////////////////////////////////////////////
// create RF frontend interfacing
////////////////////////////////////////////////////////////////////
static const std::vector dirs = boost::assign::list_of(RX_DIRECTION)(TX_DIRECTION);
BOOST_FOREACH(direction_t dir, dirs) {
const std::string x = (dir == RX_DIRECTION) ? "rx" : "tx";
const std::string key = std::string(((dir == RX_DIRECTION) ? "RX" : "TX")) + std::string(((dspno == _fe1) ? "1" : "2"));
const fs_path rf_fe_path
= mb_path / "dboards" / "A" / (x + "_frontends") / (dspno ? "B" : "A");
// This will connect all the AD936x-specific items
_codec_mgr->populate_frontend_subtree(
_tree->subtree(rf_fe_path), key, dir
);
// Now connect all the b200_impl-specific items
_tree->create(rf_fe_path / "sensors" / "lo_locked")
.publish(boost::bind(&b200_impl::get_fe_pll_locked, this, dir == TX_DIRECTION))
;
_tree->access(rf_fe_path / "freq" / "value")
.subscribe(boost::bind(&b200_impl::update_bandsel, this, key, _1))
;
if (dir == RX_DIRECTION)
{
static const std::vector ants = boost::assign::list_of("TX/RX")("RX2");
_tree->create >(rf_fe_path / "antenna" / "options").set(ants);
_tree->create(rf_fe_path / "antenna" / "value")
.subscribe(boost::bind(&b200_impl::update_antenna_sel, this, dspno, _1))
.set("RX2")
;
}
else if (dir == TX_DIRECTION)
{
static const std::vector ants(1, "TX/RX");
_tree->create >(rf_fe_path / "antenna" / "options").set(ants);
_tree->create(rf_fe_path / "antenna" / "value").set("TX/RX");
}
}
}
/***********************************************************************
* loopback tests
**********************************************************************/
void b200_impl::register_loopback_self_test(wb_iface::sptr iface)
{
bool test_fail = false;
UHD_MSG(status) << "Performing register loopback test... " << std::flush;
size_t hash = size_t(time(NULL));
for (size_t i = 0; i < 100; i++)
{
boost::hash_combine(hash, i);
iface->poke32(TOREG(SR_TEST), boost::uint32_t(hash));
test_fail = iface->peek32(RB32_TEST) != boost::uint32_t(hash);
if (test_fail) break; //exit loop on any failure
}
UHD_MSG(status) << ((test_fail)? "fail" : "pass") << std::endl;
}
/***********************************************************************
* Sample and tick rate comprehension below
**********************************************************************/
void b200_impl::enforce_tick_rate_limits(size_t chan_count, double tick_rate, const std::string &direction /*= ""*/)
{
const size_t max_chans = 2;
if (chan_count > max_chans)
{
throw uhd::value_error(boost::str(
boost::format("cannot not setup %d %s channels (maximum is %d)")
% chan_count
% (direction.empty() ? "data" : direction)
% max_chans
));
}
else
{
const double max_tick_rate = ad9361_device_t::AD9361_MAX_CLOCK_RATE / ((chan_count <= 1) ? 1 : 2);
if (tick_rate - max_tick_rate >= 1.0)
{
throw uhd::value_error(boost::str(
boost::format("current master clock rate (%.6f MHz) exceeds maximum possible master clock rate (%.6f MHz) when using %d %s channels")
% (tick_rate/1e6)
% (max_tick_rate/1e6)
% chan_count
% (direction.empty() ? "data" : direction)
));
}
}
}
double b200_impl::set_tick_rate(const double new_tick_rate)
{
UHD_MSG(status) << (boost::format("Asking for clock rate %.6f MHz... ") % (new_tick_rate/1e6)) << std::flush;
check_tick_rate_with_current_streamers(new_tick_rate); // Defined in b200_io_impl.cpp
// Make sure the clock rate is actually changed before doing
// the full Monty of setting regs and loopback tests etc.
if (std::abs(new_tick_rate - _tick_rate) < 1.0) {
UHD_MSG(status) << "OK" << std::endl;
return _tick_rate;
}
_tick_rate = _codec_ctrl->set_clock_rate(new_tick_rate);
UHD_MSG(status) << std::endl << (boost::format("Actually got clock rate %.6f MHz.") % (_tick_rate/1e6)) << std::endl;
BOOST_FOREACH(radio_perifs_t &perif, _radio_perifs)
{
perif.time64->set_tick_rate(_tick_rate);
perif.time64->self_test();
}
return _tick_rate;
}
/***********************************************************************
* compat checks
**********************************************************************/
void b200_impl::check_fw_compat(void)
{
boost::uint16_t compat_num = _iface->get_compat_num();
boost::uint32_t compat_major = (boost::uint32_t) (compat_num >> 8);
boost::uint32_t compat_minor = (boost::uint32_t) (compat_num & 0xFF);
if (compat_major != B200_FW_COMPAT_NUM_MAJOR){
throw uhd::runtime_error(str(boost::format(
"Expected firmware compatibility number %d.%d, but got %d.%d:\n"
"The firmware build is not compatible with the host code build.\n"
"%s"
) % int(B200_FW_COMPAT_NUM_MAJOR) % int(B200_FW_COMPAT_NUM_MINOR)
% compat_major % compat_minor % print_utility_error("uhd_images_downloader.py")));
}
_tree->create("/mboards/0/fw_version").set(str(boost::format("%u.%u")
% compat_major % compat_minor));
}
void b200_impl::check_fpga_compat(void)
{
const boost::uint64_t compat = _local_ctrl->peek64(0);
const boost::uint32_t signature = boost::uint32_t(compat >> 32);
const boost::uint16_t compat_major = boost::uint16_t(compat >> 16);
const boost::uint16_t compat_minor = boost::uint16_t(compat & 0xffff);
if (signature != 0xACE0BA5E) throw uhd::runtime_error(
"b200::check_fpga_compat signature register readback failed");
const boost::uint16_t expected = (_product == B205 ? B205_FPGA_COMPAT_NUM : B200_FPGA_COMPAT_NUM);
if (compat_major != expected)
{
throw uhd::runtime_error(str(boost::format(
"Expected FPGA compatibility number %d, but got %d:\n"
"The FPGA build is not compatible with the host code build.\n"
"%s"
) % int(expected) % compat_major % print_utility_error("uhd_images_downloader.py")));
}
_tree->create("/mboards/0/fpga_version").set(str(boost::format("%u.%u")
% compat_major % compat_minor));
}
void b200_impl::set_mb_eeprom(const uhd::usrp::mboard_eeprom_t &mb_eeprom)
{
mb_eeprom.commit(*_iface, "B200");
}
boost::uint32_t b200_impl::get_fp_gpio(gpio_core_200::sptr gpio)
{
return boost::uint32_t(gpio->read_gpio(dboard_iface::UNIT_RX));
}
void b200_impl::set_fp_gpio(gpio_core_200::sptr gpio, const gpio_attr_t attr, const boost::uint32_t value)
{
switch (attr)
{
case GPIO_CTRL: return gpio->set_pin_ctrl(dboard_iface::UNIT_RX, value);
case GPIO_DDR: return gpio->set_gpio_ddr(dboard_iface::UNIT_RX, value);
case GPIO_OUT: return gpio->set_gpio_out(dboard_iface::UNIT_RX, value);
case GPIO_ATR_0X: return gpio->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_IDLE, value);
case GPIO_ATR_RX: return gpio->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_RX_ONLY, value);
case GPIO_ATR_TX: return gpio->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_TX_ONLY, value);
case GPIO_ATR_XX: return gpio->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_FULL_DUPLEX, value);
default: UHD_THROW_INVALID_CODE_PATH();
}
}
/***********************************************************************
* Reference time and clock
**********************************************************************/
void b200_impl::update_clock_source(const std::string &source)
{
// For B205, ref_sel selects whether or not to lock to the external clock source
if (_product == B205)
{
if (source == "external" and _time_source == EXTERNAL)
{
throw uhd::value_error("external reference cannot be both a clock source and a time source");
}
if (source == "internal")
{
if (_gpio_state.ref_sel != 0)
{
_gpio_state.ref_sel = 0;
this->update_gpio_state();
}
}
else if (source == "external")
{
if (_gpio_state.ref_sel != 1)
{
_gpio_state.ref_sel = 1;
this->update_gpio_state();
}
}
else
{
throw uhd::key_error("update_clock_source: unknown source: " + source);
}
return;
}
// For all other devices, ref_sel selects the external or gpsdo clock source
// and the ADF4001 selects whether to lock to it or not
if (source == "internal")
{
_adf4001_iface->set_lock_to_ext_ref(false);
}
else if (source == "external")
{
if (_gpio_state.ref_sel != 0)
{
_gpio_state.ref_sel = 0;
this->update_gpio_state();
}
_adf4001_iface->set_lock_to_ext_ref(true);
}
else if (_gps and source == "gpsdo")
{
if (_gpio_state.ref_sel != 1)
{
_gpio_state.ref_sel = 1;
this->update_gpio_state();
}
_adf4001_iface->set_lock_to_ext_ref(true);
}
else
{
throw uhd::key_error("update_clock_source: unknown source: " + source);
}
}
void b200_impl::update_time_source(const std::string &source)
{
if (_product == B205 and source == "external" and _gpio_state.ref_sel == 1)
{
throw uhd::value_error("external reference cannot be both a time source and a clock source");
}
// We assume source is valid for this device (if it's gone through
// the prop three, then it definitely is thanks to our coercer)
time_source_t value;
if (source == "none")
value = NONE;
else if (source == "internal")
value = INTERNAL;
else if (source == "external")
value = EXTERNAL;
else if (_gps and source == "gpsdo")
value = GPSDO;
else
throw uhd::key_error("update_time_source: unknown source: " + source);
if (_time_source != value)
{
_local_ctrl->poke32(TOREG(SR_CORE_PPS_SEL), value);
_time_source = value;
}
}
/***********************************************************************
* GPIO setup
**********************************************************************/
void b200_impl::update_bandsel(const std::string& which, double freq)
{
// B205 does not have bandsels
if (_product == B205) {
return;
}
if(which[0] == 'R') {
if(freq < 2.2e9) {
_gpio_state.rx_bandsel_a = 0;
_gpio_state.rx_bandsel_b = 0;
_gpio_state.rx_bandsel_c = 1;
} else if((freq >= 2.2e9) && (freq < 4e9)) {
_gpio_state.rx_bandsel_a = 0;
_gpio_state.rx_bandsel_b = 1;
_gpio_state.rx_bandsel_c = 0;
} else if((freq >= 4e9) && (freq <= 6e9)) {
_gpio_state.rx_bandsel_a = 1;
_gpio_state.rx_bandsel_b = 0;
_gpio_state.rx_bandsel_c = 0;
} else {
UHD_THROW_INVALID_CODE_PATH();
}
} else if(which[0] == 'T') {
if(freq < 2.5e9) {
_gpio_state.tx_bandsel_a = 0;
_gpio_state.tx_bandsel_b = 1;
} else if((freq >= 2.5e9) && (freq <= 6e9)) {
_gpio_state.tx_bandsel_a = 1;
_gpio_state.tx_bandsel_b = 0;
} else {
UHD_THROW_INVALID_CODE_PATH();
}
} else {
UHD_THROW_INVALID_CODE_PATH();
}
update_gpio_state();
}
void b200_impl::update_gpio_state(void)
{
const boost::uint32_t misc_word = 0
| (_gpio_state.swap_atr << 8)
| (_gpio_state.tx_bandsel_a << 7)
| (_gpio_state.tx_bandsel_b << 6)
| (_gpio_state.rx_bandsel_a << 5)
| (_gpio_state.rx_bandsel_b << 4)
| (_gpio_state.rx_bandsel_c << 3)
// Bit 2 currently not used.
| (_gpio_state.mimo << 1)
| (_gpio_state.ref_sel << 0)
;
_local_ctrl->poke32(TOREG(SR_CORE_MISC), misc_word);
}
void b200_impl::update_atrs(void)
{
if (_radio_perifs.size() > _fe1 and _radio_perifs[_fe1].atr)
{
radio_perifs_t &perif = _radio_perifs[_fe1];
const bool enb_rx = bool(perif.rx_streamer.lock());
const bool enb_tx = bool(perif.tx_streamer.lock());
const bool is_rx2 = perif.ant_rx2;
const size_t rxonly = (enb_rx)? ((is_rx2)? STATE_RX1_RX2 : STATE_RX1_TXRX) : STATE_OFF;
const size_t txonly = (enb_tx)? (STATE_TX1_TXRX) : STATE_OFF;
size_t fd = STATE_OFF;
if (enb_rx and enb_tx) fd = STATE_FDX1_TXRX;
if (enb_rx and not enb_tx) fd = rxonly;
if (not enb_rx and enb_tx) fd = txonly;
gpio_core_200_32wo::sptr atr = perif.atr;
atr->set_atr_reg(dboard_iface::ATR_REG_IDLE, STATE_OFF);
atr->set_atr_reg(dboard_iface::ATR_REG_RX_ONLY, rxonly);
atr->set_atr_reg(dboard_iface::ATR_REG_TX_ONLY, txonly);
atr->set_atr_reg(dboard_iface::ATR_REG_FULL_DUPLEX, fd);
}
if (_radio_perifs.size() > _fe2 and _radio_perifs[_fe2].atr)
{
radio_perifs_t &perif = _radio_perifs[_fe2];
const bool enb_rx = bool(perif.rx_streamer.lock());
const bool enb_tx = bool(perif.tx_streamer.lock());
const bool is_rx2 = perif.ant_rx2;
const size_t rxonly = (enb_rx)? ((is_rx2)? STATE_RX2_RX2 : STATE_RX2_TXRX) : STATE_OFF;
const size_t txonly = (enb_tx)? (STATE_TX2_TXRX) : STATE_OFF;
size_t fd = STATE_OFF;
if (enb_rx and enb_tx) fd = STATE_FDX2_TXRX;
if (enb_rx and not enb_tx) fd = rxonly;
if (not enb_rx and enb_tx) fd = txonly;
gpio_core_200_32wo::sptr atr = perif.atr;
atr->set_atr_reg(dboard_iface::ATR_REG_IDLE, STATE_OFF);
atr->set_atr_reg(dboard_iface::ATR_REG_RX_ONLY, rxonly);
atr->set_atr_reg(dboard_iface::ATR_REG_TX_ONLY, txonly);
atr->set_atr_reg(dboard_iface::ATR_REG_FULL_DUPLEX, fd);
}
}
void b200_impl::update_antenna_sel(const size_t which, const std::string &ant)
{
if (ant != "TX/RX" and ant != "RX2") throw uhd::value_error("b200: unknown RX antenna option: " + ant);
_radio_perifs[which].ant_rx2 = (ant == "RX2");
this->update_atrs();
}
void b200_impl::update_enables(void)
{
//extract settings from state variables
const bool enb_tx1 = (_radio_perifs.size() > _fe1) and bool(_radio_perifs[_fe1].tx_streamer.lock());
const bool enb_rx1 = (_radio_perifs.size() > _fe1) and bool(_radio_perifs[_fe1].rx_streamer.lock());
const bool enb_tx2 = (_radio_perifs.size() > _fe2) and bool(_radio_perifs[_fe2].tx_streamer.lock());
const bool enb_rx2 = (_radio_perifs.size() > _fe2) and bool(_radio_perifs[_fe2].rx_streamer.lock());
const size_t num_rx = (enb_rx1?1:0) + (enb_rx2?1:0);
const size_t num_tx = (enb_tx1?1:0) + (enb_tx2?1:0);
const bool mimo = num_rx == 2 or num_tx == 2;
if ((num_rx + num_tx) == 3)
{
throw uhd::runtime_error("b200: 2 RX 1 TX and 1 RX 2 TX configurations not possible");
}
//setup the active chains in the codec
_codec_ctrl->set_active_chains(enb_tx1, enb_tx2, enb_rx1, enb_rx2);
if ((num_rx + num_tx) == 0) _codec_ctrl->set_active_chains(true, false, true, false); //enable something
//figure out if mimo is enabled based on new state
_gpio_state.mimo = (mimo)? 1 : 0;
update_gpio_state();
//atrs change based on enables
this->update_atrs();
}
sensor_value_t b200_impl::get_ref_locked(void)
{
const bool lock = (_local_ctrl->peek32(RB32_CORE_MISC) & 0x1) == 0x1;
return sensor_value_t("Ref", lock, "locked", "unlocked");
}
sensor_value_t b200_impl::get_fe_pll_locked(const bool is_tx)
{
const boost::uint32_t st = _local_ctrl->peek32(RB32_CORE_PLL);
const bool locked = is_tx ? ((st & 0x1) > 0) : ((st & 0x2) > 0);
return sensor_value_t("LO", locked, "locked", "unlocked");
}