// // Copyright 2012-2013 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "b200_iface.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace uhd; using namespace uhd::transport; static const bool load_img_msg = true; const static boost::uint8_t FX3_FIRMWARE_LOAD = 0xA0; const static boost::uint8_t VRT_VENDOR_OUT = (LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT); const static boost::uint8_t VRT_VENDOR_IN = (LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN); const static boost::uint8_t B200_VREQ_FPGA_START = 0x02; const static boost::uint8_t B200_VREQ_FPGA_DATA = 0x12; const static boost::uint8_t B200_VREQ_GET_COMPAT = 0x15; const static boost::uint8_t B200_VREQ_SET_FPGA_HASH = 0x1C; const static boost::uint8_t B200_VREQ_GET_FPGA_HASH = 0x1D; const static boost::uint8_t B200_VREQ_SET_FW_HASH = 0x1E; const static boost::uint8_t B200_VREQ_GET_FW_HASH = 0x1F; const static boost::uint8_t B200_VREQ_LOOP = 0x22; const static boost::uint8_t B200_VREQ_SPI_WRITE = 0x32; const static boost::uint8_t B200_VREQ_SPI_READ = 0x42; const static boost::uint8_t B200_VREQ_FPGA_CONFIG = 0x55; const static boost::uint8_t B200_VREQ_FPGA_RESET = 0x62; const static boost::uint8_t B200_VREQ_GPIF_RESET = 0x72; const static boost::uint8_t B200_VREQ_GET_USB = 0x80; const static boost::uint8_t B200_VREQ_GET_STATUS = 0x83; const static boost::uint8_t B200_VREQ_AD9361_CTRL_WRITE = 0x90; const static boost::uint8_t B200_VREQ_AD9361_CTRL_READ = 0x91; const static boost::uint8_t B200_VREQ_FX3_RESET = 0x99; const static boost::uint8_t B200_VREQ_EEPROM_WRITE = 0xBA; const static boost::uint8_t B200_VREQ_EEPROM_READ = 0xBB; const static boost::uint8_t FX3_STATE_UNDEFINED = 0x00; const static boost::uint8_t FX3_STATE_FPGA_READY = 0x01; const static boost::uint8_t FX3_STATE_CONFIGURING_FPGA = 0x02; const static boost::uint8_t FX3_STATE_BUSY = 0x03; const static boost::uint8_t FX3_STATE_RUNNING = 0x04; const static boost::uint8_t FX3_STATE_UNCONFIGURED = 0x05; const static boost::uint8_t FX3_STATE_ERROR = 0x06; const static int VREQ_MAX_SIZE_USB2 = 64; const static int VREQ_MAX_SIZE_USB3 = 512; const static int VREQ_DEFAULT_SIZE = VREQ_MAX_SIZE_USB2; const static int VREQ_MAX_SIZE = VREQ_MAX_SIZE_USB3; typedef boost::uint32_t hash_type; /*********************************************************************** * Helper Functions **********************************************************************/ /*! * Create a file hash * The hash will be used to identify the loaded firmware and fpga image * \param filename file used to generate hash value * \return hash value in a size_t type */ static hash_type generate_hash(const char *filename) { if (filename == NULL) return hash_type(0); std::ifstream file(filename); if (not file){ throw uhd::io_error(std::string("cannot open input file ") + filename); } size_t hash = 0; char ch; long long count = 0; while (file.get(ch)) { count++; boost::hash_combine(hash, ch); } if (count == 0){ throw uhd::io_error(std::string("empty input file ") + filename); } if (not file.eof()){ throw uhd::io_error(std::string("file error ") + filename); } file.close(); return hash_type(hash); } /*! * Verify checksum of a Intel HEX record * \param record a line from an Intel HEX file * \return true if record is valid, false otherwise */ bool checksum(const std::string& record) { size_t len = record.length(); unsigned int i; unsigned char sum = 0; unsigned int val; for (i = 1; i < len; i += 2) { std::istringstream(record.substr(i, 2)) >> std::hex >> val; sum += val; } if (sum == 0) return true; else return false; } /*! * Parse Intel HEX record * * \param record a line from an Intel HEX file * \param len output length of record * \param addr output address * \param type output type * \param data output data * \return true if record is sucessfully read, false on error */ bool parse_record(const std::string& record, boost::uint16_t &len, \ boost::uint16_t &addr, boost::uint16_t &type, unsigned char* data) { unsigned int i; std::string _data; unsigned int val; if (record.substr(0, 1) != ":") return false; std::istringstream(record.substr(1, 2)) >> std::hex >> len; std::istringstream(record.substr(3, 4)) >> std::hex >> addr; std::istringstream(record.substr(7, 2)) >> std::hex >> type; if (len > (2 * (record.length() - 9))) // sanity check to prevent buffer overrun return false; for (i = 0; i < len; i++) { std::istringstream(record.substr(9 + 2 * i, 2)) >> std::hex >> val; data[i] = (unsigned char) val; } return true; } /*********************************************************************** * The implementation class **********************************************************************/ class b200_iface_impl : public b200_iface{ public: b200_iface_impl(usb_control::sptr usb_ctrl): _usb_ctrl(usb_ctrl) { //NOP } int fx3_control_write(boost::uint8_t request, boost::uint16_t value, boost::uint16_t index, unsigned char *buff, boost::uint16_t length, boost::int32_t timeout = 0) { return _usb_ctrl->submit(VRT_VENDOR_OUT, // bmReqeustType request, // bRequest value, // wValue index, // wIndex buff, // data length, // wLength timeout); // timeout } int fx3_control_read(boost::uint8_t request, boost::uint16_t value, boost::uint16_t index, unsigned char *buff, boost::uint16_t length, boost::int32_t timeout = 0) { return _usb_ctrl->submit(VRT_VENDOR_IN, // bmReqeustType request, // bRequest value, // wValue index, // wIndex buff, // data length, // wLength timeout); // timeout } void write_i2c(UHD_UNUSED(boost::uint16_t addr), UHD_UNUSED(const byte_vector_t &bytes)) { throw uhd::not_implemented_error("b200 write i2c"); } byte_vector_t read_i2c(UHD_UNUSED(boost::uint16_t addr), UHD_UNUSED(size_t num_bytes)) { throw uhd::not_implemented_error("b200 read i2c"); } void write_eeprom(boost::uint16_t addr, boost::uint16_t offset, const byte_vector_t &bytes) { int ret = fx3_control_write(B200_VREQ_EEPROM_WRITE, 0, offset | (boost::uint16_t(addr) << 8), (unsigned char *) &bytes[0], bytes.size()); if (ret < 0) throw uhd::io_error((boost::format("Failed to write EEPROM (%d: %s)") % ret % libusb_error_name(ret)).str()); else if ((size_t)ret != bytes.size()) throw uhd::io_error((boost::format("Short write on write EEPROM (expecting: %d, returned: %d)") % bytes.size() % ret).str()); } byte_vector_t read_eeprom( boost::uint16_t addr, boost::uint16_t offset, size_t num_bytes) { byte_vector_t recv_bytes(num_bytes); int bytes_read = fx3_control_read(B200_VREQ_EEPROM_READ, 0, offset | (boost::uint16_t(addr) << 8), (unsigned char*) &recv_bytes[0], num_bytes); if (bytes_read < 0) throw uhd::io_error((boost::format("Failed to read EEPROM (%d: %s)") % bytes_read % libusb_error_name(bytes_read)).str()); else if ((size_t)bytes_read != num_bytes) throw uhd::io_error((boost::format("Short read on read EEPROM (expecting: %d, returned: %d)") % num_bytes % bytes_read).str()); return recv_bytes; } void transact_spi( unsigned char *tx_data, size_t num_tx_bits, unsigned char *rx_data, size_t num_rx_bits) { int ret = 0; boost::uint16_t tx_length = num_tx_bits / 8; if(tx_data[0] & 0x80) { ret = fx3_control_write(B200_VREQ_SPI_WRITE, 0x00, \ 0x00, tx_data, tx_length); } else { ret = fx3_control_write(B200_VREQ_SPI_READ, 0x00, \ 0x00, tx_data, tx_length); } if (ret < 0) throw uhd::io_error((boost::format("Failed to write SPI (%d: %s)") % ret % libusb_error_name(ret)).str()); else if (ret != tx_length) throw uhd::io_error((boost::format("Short write on write SPI (expecting: %d, returned: %d)") % tx_length % ret).str()); if(num_rx_bits) { boost::uint16_t total_length = num_rx_bits / 8; ret = fx3_control_read(B200_VREQ_LOOP, 0x00, \ 0x00, rx_data, total_length); if (ret < 0) throw uhd::io_error((boost::format("Failed to readback (%d: %s)") % ret % libusb_error_name(ret)).str()); else if (ret != total_length) throw uhd::io_error((boost::format("Short read on readback (expecting: %d, returned: %d)") % total_length % ret).str()); } } void ad9361_transact(const unsigned char in_buff[64], unsigned char out_buff[64]) { const int bytes_to_write = 64; const int bytes_to_read = 64; const size_t read_retries = 30; int ret = fx3_control_write(B200_VREQ_AD9361_CTRL_WRITE, 0x00, 0x00, (unsigned char *)in_buff, bytes_to_write); if (ret < 0) throw uhd::io_error((boost::format("Failed to write AD9361 (%d: %s)") % ret % libusb_error_name(ret)).str()); else if (ret != bytes_to_write) throw uhd::io_error((boost::format("Short write on write AD9361 (expecting: %d, returned: %d)") % bytes_to_write % ret).str()); for (size_t i = 0; i < read_retries; i++) { ret = fx3_control_read(B200_VREQ_AD9361_CTRL_READ, 0x00, 0x00, out_buff, bytes_to_read, 1000); if (ret < 0) throw uhd::io_error((boost::format("Failed to read AD9361 (%d: %s)") % ret % libusb_error_name(ret)).str()); if (ret == bytes_to_read) return; } throw uhd::io_error(str(boost::format("Failed to read complete AD9361 (expecting: %d, last read: %d)") % bytes_to_read % ret)); } void load_firmware(const std::string filestring, UHD_UNUSED(bool force) = false) { const char *filename = filestring.c_str(); /* Fields used in each USB control transfer. */ boost::uint16_t len = 0; boost::uint16_t type = 0; boost::uint16_t lower_address_bits = 0x0000; unsigned char data[512]; /* Can be set by the Intel HEX record 0x04, used for all 0x00 records * thereafter. Note this field takes the place of the 'index' parameter in * libusb calls, and is necessary for FX3's 32-bit addressing. */ boost::uint16_t upper_address_bits = 0x0000; std::ifstream file; file.open(filename, std::ifstream::in); if(!file.good()) { throw uhd::io_error("fx3_load_firmware: cannot open firmware input file"); } if (load_img_msg) UHD_MSG(status) << "Loading firmware image: " \ << filestring << "..." << std::flush; while (!file.eof()) { boost::int32_t ret = 0; std::string record; file >> record; if (!(record.length() > 0)) continue; /* Check for valid Intel HEX record. */ if (!checksum(record) || !parse_record(record, len, \ lower_address_bits, type, data)) { throw uhd::io_error("fx3_load_firmware: bad intel hex record checksum"); } /* Type 0x00: Data. */ if (type == 0x00) { ret = fx3_control_write(FX3_FIRMWARE_LOAD, \ lower_address_bits, upper_address_bits, data, len); if (ret < 0) { throw uhd::io_error("usrp_load_firmware: usrp_control_write failed"); } } /* Type 0x01: EOF. */ else if (type == 0x01) { if (lower_address_bits != 0x0000 || len != 0 ) { throw uhd::io_error("fx3_load_firmware: For EOF record, address must be 0, length must be 0."); } //TODO //usrp_set_firmware_hash(hash); //set hash before reset /* Successful termination! */ file.close(); /* Let the system settle. */ boost::this_thread::sleep(boost::posix_time::milliseconds(1000)); return; } /* Type 0x04: Extended Linear Address Record. */ else if (type == 0x04) { if (lower_address_bits != 0x0000 || len != 2 ) { throw uhd::io_error("fx3_load_firmware: For ELA record, address must be 0, length must be 2."); } upper_address_bits = ((boost::uint16_t)((data[0] & 0x00FF) << 8))\ + ((boost::uint16_t)(data[1] & 0x00FF)); } /* Type 0x05: Start Linear Address Record. */ else if (type == 0x05) { if (lower_address_bits != 0x0000 || len != 4 ) { throw uhd::io_error("fx3_load_firmware: For SLA record, address must be 0, length must be 4."); } /* The firmware load is complete. We now need to tell the CPU * to jump to an execution address start point, now contained within * the data field. Parse these address bits out, and then push the * instruction. */ upper_address_bits = ((boost::uint16_t)((data[0] & 0x00FF) << 8))\ + ((boost::uint16_t)(data[1] & 0x00FF)); lower_address_bits = ((boost::uint16_t)((data[2] & 0x00FF) << 8))\ + ((boost::uint16_t)(data[3] & 0x00FF)); fx3_control_write(FX3_FIRMWARE_LOAD, lower_address_bits, \ upper_address_bits, 0, 0); if (load_img_msg) UHD_MSG(status) << " done" << std::endl; } /* If we receive an unknown record type, error out. */ else { throw uhd::io_error("fx3_load_firmware: unsupported record type."); } } /* There was no valid EOF. */ throw uhd::io_error("fx3_load_firmware: No EOF record found."); } void reset_fx3(void) { unsigned char data[4]; memset(data, 0x00, sizeof(data)); const int bytes_to_send = sizeof(data); int ret = fx3_control_write(B200_VREQ_FX3_RESET, 0x00, 0x00, data, bytes_to_send); if (ret < 0) throw uhd::io_error((boost::format("Failed to reset FX3 (%d: %s)") % ret % libusb_error_name(ret)).str()); else if (ret != bytes_to_send) throw uhd::io_error((boost::format("Short write on reset FX3 (expecting: %d, returned: %d)") % bytes_to_send % ret).str()); } void reset_gpif(void) { unsigned char data[4]; memset(data, 0x00, sizeof(data)); const int bytes_to_send = sizeof(data); int ret = fx3_control_write(B200_VREQ_GPIF_RESET, 0x00, 0x00, data, bytes_to_send); if (ret < 0) throw uhd::io_error((boost::format("Failed to reset GPIF (%d: %s)") % ret % libusb_error_name(ret)).str()); else if (ret != bytes_to_send) throw uhd::io_error((boost::format("Short write on reset GPIF (expecting: %d, returned: %d)") % bytes_to_send % ret).str()); } void set_fpga_reset_pin(const bool reset) { unsigned char data[4]; memset(data, (reset)? 0xFF : 0x00, sizeof(data)); UHD_THROW_INVALID_CODE_PATH(); // Below is dead code as long as UHD_THROW_INVALID_CODE_PATH(); is declared above. // It is preserved here in a comment in case it is needed later: /* const int bytes_to_send = sizeof(data); int ret = fx3_control_write(B200_VREQ_FPGA_RESET, 0x00, 0x00, data, bytes_to_send); if (ret < 0) throw uhd::io_error((boost::format("Failed to reset FPGA (%d: %s)") % ret % libusb_error_name(ret)).str()); else if (ret != bytes_to_send) throw uhd::io_error((boost::format("Short write on reset FPGA (expecting: %d, returned: %d)") % bytes_to_send % ret).str()); */ } boost::uint8_t get_usb_speed(void) { unsigned char rx_data[1]; memset(rx_data, 0x00, sizeof(rx_data)); const int bytes_to_recv = sizeof(rx_data); int ret = fx3_control_read(B200_VREQ_GET_USB, 0x00, 0x00, rx_data, bytes_to_recv); if (ret < 0) throw uhd::io_error((boost::format("Failed to get USB speed (%d: %s)") % ret % libusb_error_name(ret)).str()); else if (ret != bytes_to_recv) throw uhd::io_error((boost::format("Short read on get USB speed (expecting: %d, returned: %d)") % bytes_to_recv % ret).str()); return boost::lexical_cast(rx_data[0]); } boost::uint8_t get_fx3_status(void) { unsigned char rx_data[1]; memset(rx_data, 0x00, sizeof(rx_data)); const int bytes_to_recv = sizeof(rx_data); int ret = fx3_control_read(B200_VREQ_GET_STATUS, 0x00, 0x00, rx_data, bytes_to_recv); if (ret < 0) throw uhd::io_error((boost::format("Failed to get FX3 status (%d: %s)") % ret % libusb_error_name(ret)).str()); else if (ret != bytes_to_recv) throw uhd::io_error((boost::format("Short read on get FX3 status (expecting: %d, returned: %d)") % bytes_to_recv % ret).str()); return boost::lexical_cast(rx_data[0]); } boost::uint16_t get_compat_num(void) { unsigned char rx_data[2]; memset(rx_data, 0x00, sizeof(rx_data)); const int bytes_to_recv = sizeof(rx_data); int ret = fx3_control_read(B200_VREQ_GET_COMPAT , 0x00, 0x00, rx_data, bytes_to_recv); if (ret < 0) throw uhd::io_error((boost::format("Failed to get compat num (%d: %s)") % ret % libusb_error_name(ret)).str()); else if (ret != bytes_to_recv) throw uhd::io_error((boost::format("Short read on get compat num (expecting: %d, returned: %d)") % bytes_to_recv % ret).str()); return (((uint16_t)rx_data[0]) << 8) | rx_data[1]; } void usrp_get_firmware_hash(hash_type &hash) { const int bytes_to_recv = 4; if (sizeof(hash_type) != bytes_to_recv) throw uhd::type_error((boost::format("hash_type is %d bytes but transfer length is %d bytes") % sizeof(hash_type) % bytes_to_recv).str()); int ret = fx3_control_read(B200_VREQ_GET_FW_HASH, 0x00, 0x00, (unsigned char*) &hash, bytes_to_recv, 500); if (ret < 0) throw uhd::io_error((boost::format("Failed to get firmware hash (%d: %s)") % ret % libusb_error_name(ret)).str()); else if (ret != bytes_to_recv) throw uhd::io_error((boost::format("Short read on get firmware hash (expecting: %d, returned: %d)") % bytes_to_recv % ret).str()); } void usrp_set_firmware_hash(hash_type hash) { const int bytes_to_send = 4; if (sizeof(hash_type) != bytes_to_send) throw uhd::type_error((boost::format("hash_type is %d bytes but transfer length is %d bytes") % sizeof(hash_type) % bytes_to_send).str()); int ret = fx3_control_write(B200_VREQ_SET_FW_HASH, 0x00, 0x00, (unsigned char*) &hash, bytes_to_send); if (ret < 0) throw uhd::io_error((boost::format("Failed to set firmware hash (%d: %s)") % ret % libusb_error_name(ret)).str()); else if (ret != bytes_to_send) throw uhd::io_error((boost::format("Short write on set firmware hash (expecting: %d, returned: %d)") % bytes_to_send % ret).str()); } void usrp_get_fpga_hash(hash_type &hash) { const int bytes_to_recv = 4; if (sizeof(hash_type) != bytes_to_recv) throw uhd::type_error((boost::format("hash_type is %d bytes but transfer length is %d bytes") % sizeof(hash_type) % bytes_to_recv).str()); int ret = fx3_control_read(B200_VREQ_GET_FPGA_HASH, 0x00, 0x00, (unsigned char*) &hash, bytes_to_recv, 500); if (ret < 0) throw uhd::io_error((boost::format("Failed to get FPGA hash (%d: %s)") % ret % libusb_error_name(ret)).str()); else if (ret != bytes_to_recv) throw uhd::io_error((boost::format("Short read on get FPGA hash (expecting: %d, returned: %d)") % bytes_to_recv % ret).str()); } void usrp_set_fpga_hash(hash_type hash) { const int bytes_to_send = 4; if (sizeof(hash_type) != bytes_to_send) throw uhd::type_error((boost::format("hash_type is %d bytes but transfer length is %d bytes") % sizeof(hash_type) % bytes_to_send).str()); int ret = fx3_control_write(B200_VREQ_SET_FPGA_HASH, 0x00, 0x00, (unsigned char*) &hash, bytes_to_send); if (ret < 0) throw uhd::io_error((boost::format("Failed to set FPGA hash (%d: %s)") % ret % libusb_error_name(ret)).str()); else if (ret != bytes_to_send) throw uhd::io_error((boost::format("Short write on set FPGA hash (expecting: %d, returned: %d)") % bytes_to_send % ret).str()); } boost::uint32_t load_fpga(const std::string filestring) { boost::uint8_t fx3_state = 0; boost::uint32_t wait_count; int ret = 0; int bytes_to_xfer = 0; const char *filename = filestring.c_str(); hash_type hash = generate_hash(filename); hash_type loaded_hash; usrp_get_fpga_hash(loaded_hash); if (hash == loaded_hash) return 0; // Establish default largest possible control request transfer size based on operating USB speed int transfer_size = VREQ_DEFAULT_SIZE; int current_usb_speed = get_usb_speed(); if (current_usb_speed == 3) transfer_size = VREQ_MAX_SIZE_USB3; else if (current_usb_speed != 2) throw uhd::io_error("load_fpga: get_usb_speed returned invalid USB speed (not 2 or 3)."); UHD_ASSERT_THROW(transfer_size <= VREQ_MAX_SIZE); unsigned char out_buff[VREQ_MAX_SIZE]; // Request loopback read, which will indicate the firmware's current control request buffer size // Make sure that if operating as USB2, requested length is within spec int ntoread = std::min(transfer_size, (int)sizeof(out_buff)); int nread = fx3_control_read(B200_VREQ_LOOP, 0, 0, out_buff, ntoread, 1000); if (nread < 0) throw uhd::io_error((boost::format("load_fpga: unable to complete firmware loopback request (%d: %s)") % nread % libusb_error_name(nread)).str()); else if (nread != ntoread) throw uhd::io_error((boost::format("load_fpga: short read on firmware loopback request (expecting: %d, returned: %d)") % ntoread % nread).str()); transfer_size = std::min(transfer_size, nread); // Select the smaller value size_t file_size = 0; { std::ifstream file(filename, std::ios::in | std::ios::binary | std::ios::ate); file_size = file.tellg(); } std::ifstream file; file.open(filename, std::ios::in | std::ios::binary); if (!file.good()) { throw uhd::io_error("load_fpga: cannot open FPGA input file."); } // Zero the hash, in case we abort programming another image and revert to the previously programmed image usrp_set_fpga_hash(0); memset(out_buff, 0x00, sizeof(out_buff)); bytes_to_xfer = 1; ret = fx3_control_write(B200_VREQ_FPGA_CONFIG, 0, 0, out_buff, bytes_to_xfer, 1000); if (ret < 0) throw uhd::io_error((boost::format("Failed to start FPGA config (%d: %s)") % ret % libusb_error_name(ret)).str()); else if (ret != bytes_to_xfer) throw uhd::io_error((boost::format("Short write on start FPGA config (expecting: %d, returned: %d)") % bytes_to_xfer % ret).str()); wait_count = 0; do { fx3_state = get_fx3_status(); if((wait_count >= 500) || (fx3_state == FX3_STATE_ERROR) || (fx3_state == FX3_STATE_UNDEFINED)) { return fx3_state; } boost::this_thread::sleep(boost::posix_time::milliseconds(10)); wait_count++; } while(fx3_state != FX3_STATE_FPGA_READY); if (load_img_msg) UHD_MSG(status) << "Loading FPGA image: " \ << filestring << "..." << std::flush; bytes_to_xfer = 1; ret = fx3_control_write(B200_VREQ_FPGA_START, 0, 0, out_buff, bytes_to_xfer, 1000); if (ret < 0) throw uhd::io_error((boost::format("Failed to start FPGA bitstream (%d: %s)") % ret % libusb_error_name(ret)).str()); else if (ret != bytes_to_xfer) throw uhd::io_error((boost::format("Short write on start FPGA bitstream (expecting: %d, returned: %d)") % bytes_to_xfer % ret).str()); wait_count = 0; do { fx3_state = get_fx3_status(); if((wait_count >= 1000) || (fx3_state == FX3_STATE_ERROR) || (fx3_state == FX3_STATE_UNDEFINED)) { return fx3_state; } boost::this_thread::sleep(boost::posix_time::milliseconds(10)); wait_count++; } while(fx3_state != FX3_STATE_CONFIGURING_FPGA); size_t bytes_sent = 0; while (!file.eof()) { file.read((char *) out_buff, transfer_size); const std::streamsize n = file.gcount(); if(n == 0) continue; boost::uint16_t transfer_count = boost::uint16_t(n); /* Send the data to the device. */ int nwritten = fx3_control_write(B200_VREQ_FPGA_DATA, 0, 0, out_buff, transfer_count, 5000); if (nwritten < 0) throw uhd::io_error((boost::format("load_fpga: cannot write bitstream to FX3 (%d: %s)") % nwritten % libusb_error_name(nwritten)).str()); else if (nwritten != transfer_count) throw uhd::io_error((boost::format("load_fpga: short write while transferring bitstream to FX3 (expecting: %d, returned: %d)") % transfer_count % nwritten).str()); if (load_img_msg) { if (bytes_sent == 0) UHD_MSG(status) << " 0%" << std::flush; const size_t percent_before = size_t((bytes_sent*100)/file_size); bytes_sent += transfer_count; const size_t percent_after = size_t((bytes_sent*100)/file_size); if (percent_before/10 != percent_after/10) { UHD_MSG(status) << "\b\b\b\b" << std::setw(3) << percent_after << "%" << std::flush; } } } file.close(); wait_count = 0; do { fx3_state = get_fx3_status(); if((wait_count >= 500) || (fx3_state == FX3_STATE_ERROR) || (fx3_state == FX3_STATE_UNDEFINED)) { return fx3_state; } boost::this_thread::sleep(boost::posix_time::milliseconds(10)); wait_count++; } while(fx3_state != FX3_STATE_RUNNING); usrp_set_fpga_hash(hash); if (load_img_msg) UHD_MSG(status) << "\b\b\b\b done" << std::endl; return 0; } private: usb_control::sptr _usb_ctrl; }; std::string b200_iface::fx3_state_string(boost::uint8_t state) { switch (state) { case FX3_STATE_FPGA_READY: return std::string("Ready"); case FX3_STATE_CONFIGURING_FPGA: return std::string("Configuring FPGA"); case FX3_STATE_BUSY: return std::string("Busy"); case FX3_STATE_RUNNING: return std::string("Running"); case FX3_STATE_UNCONFIGURED: return std::string("Unconfigured"); case FX3_STATE_ERROR: return std::string("Error"); default: break; } return std::string("Unknown"); } /*********************************************************************** * Make an instance of the implementation **********************************************************************/ b200_iface::sptr b200_iface::make(usb_control::sptr usb_ctrl) { return sptr(new b200_iface_impl(usb_ctrl)); }