//
// Copyright 2012-2013 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "b200_iface.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace uhd;
using namespace uhd::transport;
static const bool load_img_msg = true;
const static boost::uint8_t FX3_FIRMWARE_LOAD = 0xA0;
const static boost::uint8_t VRT_VENDOR_OUT = (LIBUSB_REQUEST_TYPE_VENDOR
| LIBUSB_ENDPOINT_OUT);
const static boost::uint8_t VRT_VENDOR_IN = (LIBUSB_REQUEST_TYPE_VENDOR
| LIBUSB_ENDPOINT_IN);
const static boost::uint8_t B200_VREQ_FPGA_START = 0x02;
const static boost::uint8_t B200_VREQ_FPGA_DATA = 0x12;
const static boost::uint8_t B200_VREQ_GET_COMPAT = 0x15;
const static boost::uint8_t B200_VREQ_SET_FPGA_HASH = 0x1C;
const static boost::uint8_t B200_VREQ_GET_FPGA_HASH = 0x1D;
const static boost::uint8_t B200_VREQ_SET_FW_HASH = 0x1E;
const static boost::uint8_t B200_VREQ_GET_FW_HASH = 0x1F;
const static boost::uint8_t B200_VREQ_LOOP = 0x22;
const static boost::uint8_t B200_VREQ_SPI_WRITE = 0x32;
const static boost::uint8_t B200_VREQ_SPI_READ = 0x42;
const static boost::uint8_t B200_VREQ_FPGA_CONFIG = 0x55;
const static boost::uint8_t B200_VREQ_FPGA_RESET = 0x62;
const static boost::uint8_t B200_VREQ_GPIF_RESET = 0x72;
const static boost::uint8_t B200_VREQ_GET_USB = 0x80;
const static boost::uint8_t B200_VREQ_GET_STATUS = 0x83;
const static boost::uint8_t B200_VREQ_AD9361_CTRL_WRITE = 0x90;
const static boost::uint8_t B200_VREQ_AD9361_CTRL_READ = 0x91;
const static boost::uint8_t B200_VREQ_FX3_RESET = 0x99;
const static boost::uint8_t B200_VREQ_EEPROM_WRITE = 0xBA;
const static boost::uint8_t B200_VREQ_EEPROM_READ = 0xBB;
const static boost::uint8_t FX3_STATE_UNDEFINED = 0x00;
const static boost::uint8_t FX3_STATE_FPGA_READY = 0x01;
const static boost::uint8_t FX3_STATE_CONFIGURING_FPGA = 0x02;
const static boost::uint8_t FX3_STATE_BUSY = 0x03;
const static boost::uint8_t FX3_STATE_RUNNING = 0x04;
const static boost::uint8_t FX3_STATE_UNCONFIGURED = 0x05;
const static boost::uint8_t FX3_STATE_ERROR = 0x06;
const static int VREQ_MAX_SIZE_USB2 = 64;
const static int VREQ_MAX_SIZE_USB3 = 512;
const static int VREQ_DEFAULT_SIZE = VREQ_MAX_SIZE_USB2;
const static int VREQ_MAX_SIZE = VREQ_MAX_SIZE_USB3;
typedef boost::uint32_t hash_type;
/***********************************************************************
* Helper Functions
**********************************************************************/
/*!
* Create a file hash
* The hash will be used to identify the loaded firmware and fpga image
* \param filename file used to generate hash value
* \return hash value in a size_t type
*/
static hash_type generate_hash(const char *filename)
{
if (filename == NULL)
return hash_type(0);
std::ifstream file(filename);
if (not file){
throw uhd::io_error(std::string("cannot open input file ") + filename);
}
size_t hash = 0;
char ch;
long long count = 0;
while (file.get(ch)) {
count++;
boost::hash_combine(hash, ch);
}
if (count == 0){
throw uhd::io_error(std::string("empty input file ") + filename);
}
if (not file.eof()){
throw uhd::io_error(std::string("file error ") + filename);
}
file.close();
return hash_type(hash);
}
/*!
* Verify checksum of a Intel HEX record
* \param record a line from an Intel HEX file
* \return true if record is valid, false otherwise
*/
bool checksum(const std::string& record) {
size_t len = record.length();
unsigned int i;
unsigned char sum = 0;
unsigned int val;
for (i = 1; i < len; i += 2) {
std::istringstream(record.substr(i, 2)) >> std::hex >> val;
sum += val;
}
if (sum == 0)
return true;
else
return false;
}
/*!
* Parse Intel HEX record
*
* \param record a line from an Intel HEX file
* \param len output length of record
* \param addr output address
* \param type output type
* \param data output data
* \return true if record is sucessfully read, false on error
*/
bool parse_record(const std::string& record, boost::uint16_t &len, \
boost::uint16_t &addr, boost::uint16_t &type, unsigned char* data) {
unsigned int i;
std::string _data;
unsigned int val;
if (record.substr(0, 1) != ":")
return false;
std::istringstream(record.substr(1, 2)) >> std::hex >> len;
std::istringstream(record.substr(3, 4)) >> std::hex >> addr;
std::istringstream(record.substr(7, 2)) >> std::hex >> type;
if (len > (2 * (record.length() - 9))) // sanity check to prevent buffer overrun
return false;
for (i = 0; i < len; i++) {
std::istringstream(record.substr(9 + 2 * i, 2)) >> std::hex >> val;
data[i] = (unsigned char) val;
}
return true;
}
/***********************************************************************
* The implementation class
**********************************************************************/
class b200_iface_impl : public b200_iface{
public:
b200_iface_impl(usb_control::sptr usb_ctrl):
_usb_ctrl(usb_ctrl) {
//NOP
}
int fx3_control_write(boost::uint8_t request,
boost::uint16_t value,
boost::uint16_t index,
unsigned char *buff,
boost::uint16_t length,
boost::int32_t timeout = 0) {
return _usb_ctrl->submit(VRT_VENDOR_OUT, // bmReqeustType
request, // bRequest
value, // wValue
index, // wIndex
buff, // data
length, // wLength
timeout); // timeout
}
int fx3_control_read(boost::uint8_t request,
boost::uint16_t value,
boost::uint16_t index,
unsigned char *buff,
boost::uint16_t length,
boost::int32_t timeout = 0) {
return _usb_ctrl->submit(VRT_VENDOR_IN, // bmReqeustType
request, // bRequest
value, // wValue
index, // wIndex
buff, // data
length, // wLength
timeout); // timeout
}
void write_i2c(UHD_UNUSED(boost::uint16_t addr), UHD_UNUSED(const byte_vector_t &bytes))
{
throw uhd::not_implemented_error("b200 write i2c");
}
byte_vector_t read_i2c(UHD_UNUSED(boost::uint16_t addr), UHD_UNUSED(size_t num_bytes))
{
throw uhd::not_implemented_error("b200 read i2c");
}
void write_eeprom(boost::uint16_t addr, boost::uint16_t offset,
const byte_vector_t &bytes) {
int ret = fx3_control_write(B200_VREQ_EEPROM_WRITE,
0, offset | (boost::uint16_t(addr) << 8),
(unsigned char *) &bytes[0],
bytes.size());
if (ret < 0)
throw uhd::io_error((boost::format("Failed to write EEPROM (%d: %s)") % ret % libusb_error_name(ret)).str());
else if ((size_t)ret != bytes.size())
throw uhd::io_error((boost::format("Short write on write EEPROM (expecting: %d, returned: %d)") % bytes.size() % ret).str());
}
byte_vector_t read_eeprom(
boost::uint16_t addr,
boost::uint16_t offset,
size_t num_bytes) {
byte_vector_t recv_bytes(num_bytes);
int bytes_read = fx3_control_read(B200_VREQ_EEPROM_READ,
0, offset | (boost::uint16_t(addr) << 8),
(unsigned char*) &recv_bytes[0],
num_bytes);
if (bytes_read < 0)
throw uhd::io_error((boost::format("Failed to read EEPROM (%d: %s)") % bytes_read % libusb_error_name(bytes_read)).str());
else if ((size_t)bytes_read != num_bytes)
throw uhd::io_error((boost::format("Short read on read EEPROM (expecting: %d, returned: %d)") % num_bytes % bytes_read).str());
return recv_bytes;
}
void transact_spi(
unsigned char *tx_data,
size_t num_tx_bits,
unsigned char *rx_data,
size_t num_rx_bits) {
int ret = 0;
boost::uint16_t tx_length = num_tx_bits / 8;
if(tx_data[0] & 0x80) {
ret = fx3_control_write(B200_VREQ_SPI_WRITE, 0x00, \
0x00, tx_data, tx_length);
} else {
ret = fx3_control_write(B200_VREQ_SPI_READ, 0x00, \
0x00, tx_data, tx_length);
}
if (ret < 0)
throw uhd::io_error((boost::format("Failed to write SPI (%d: %s)") % ret % libusb_error_name(ret)).str());
else if (ret != tx_length)
throw uhd::io_error((boost::format("Short write on write SPI (expecting: %d, returned: %d)") % tx_length % ret).str());
if(num_rx_bits) {
boost::uint16_t total_length = num_rx_bits / 8;
ret = fx3_control_read(B200_VREQ_LOOP, 0x00, \
0x00, rx_data, total_length);
if (ret < 0)
throw uhd::io_error((boost::format("Failed to readback (%d: %s)") % ret % libusb_error_name(ret)).str());
else if (ret != total_length)
throw uhd::io_error((boost::format("Short read on readback (expecting: %d, returned: %d)") % total_length % ret).str());
}
}
void ad9361_transact(const unsigned char in_buff[64], unsigned char out_buff[64]) {
const int bytes_to_write = 64;
const int bytes_to_read = 64;
const size_t read_retries = 30;
int ret = fx3_control_write(B200_VREQ_AD9361_CTRL_WRITE, 0x00, 0x00, (unsigned char *)in_buff, bytes_to_write);
if (ret < 0)
throw uhd::io_error((boost::format("Failed to write AD9361 (%d: %s)") % ret % libusb_error_name(ret)).str());
else if (ret != bytes_to_write)
throw uhd::io_error((boost::format("Short write on write AD9361 (expecting: %d, returned: %d)") % bytes_to_write % ret).str());
for (size_t i = 0; i < read_retries; i++)
{
ret = fx3_control_read(B200_VREQ_AD9361_CTRL_READ, 0x00, 0x00, out_buff, bytes_to_read, 1000);
if (ret < 0)
throw uhd::io_error((boost::format("Failed to read AD9361 (%d: %s)") % ret % libusb_error_name(ret)).str());
if (ret == bytes_to_read)
return;
}
throw uhd::io_error(str(boost::format("Failed to read complete AD9361 (expecting: %d, last read: %d)") % bytes_to_read % ret));
}
void load_firmware(const std::string filestring, UHD_UNUSED(bool force) = false)
{
const char *filename = filestring.c_str();
/* Fields used in each USB control transfer. */
boost::uint16_t len = 0;
boost::uint16_t type = 0;
boost::uint16_t lower_address_bits = 0x0000;
unsigned char data[512];
/* Can be set by the Intel HEX record 0x04, used for all 0x00 records
* thereafter. Note this field takes the place of the 'index' parameter in
* libusb calls, and is necessary for FX3's 32-bit addressing. */
boost::uint16_t upper_address_bits = 0x0000;
std::ifstream file;
file.open(filename, std::ifstream::in);
if(!file.good()) {
throw uhd::io_error("fx3_load_firmware: cannot open firmware input file");
}
if (load_img_msg) UHD_MSG(status) << "Loading firmware image: " \
<< filestring << "..." << std::flush;
while (!file.eof()) {
boost::int32_t ret = 0;
std::string record;
file >> record;
if (!(record.length() > 0))
continue;
/* Check for valid Intel HEX record. */
if (!checksum(record) || !parse_record(record, len, \
lower_address_bits, type, data)) {
throw uhd::io_error("fx3_load_firmware: bad intel hex record checksum");
}
/* Type 0x00: Data. */
if (type == 0x00) {
ret = fx3_control_write(FX3_FIRMWARE_LOAD, \
lower_address_bits, upper_address_bits, data, len);
if (ret < 0) {
throw uhd::io_error("usrp_load_firmware: usrp_control_write failed");
}
}
/* Type 0x01: EOF. */
else if (type == 0x01) {
if (lower_address_bits != 0x0000 || len != 0 ) {
throw uhd::io_error("fx3_load_firmware: For EOF record, address must be 0, length must be 0.");
}
//TODO
//usrp_set_firmware_hash(hash); //set hash before reset
/* Successful termination! */
file.close();
/* Let the system settle. */
boost::this_thread::sleep(boost::posix_time::milliseconds(1000));
return;
}
/* Type 0x04: Extended Linear Address Record. */
else if (type == 0x04) {
if (lower_address_bits != 0x0000 || len != 2 ) {
throw uhd::io_error("fx3_load_firmware: For ELA record, address must be 0, length must be 2.");
}
upper_address_bits = ((boost::uint16_t)((data[0] & 0x00FF) << 8))\
+ ((boost::uint16_t)(data[1] & 0x00FF));
}
/* Type 0x05: Start Linear Address Record. */
else if (type == 0x05) {
if (lower_address_bits != 0x0000 || len != 4 ) {
throw uhd::io_error("fx3_load_firmware: For SLA record, address must be 0, length must be 4.");
}
/* The firmware load is complete. We now need to tell the CPU
* to jump to an execution address start point, now contained within
* the data field. Parse these address bits out, and then push the
* instruction. */
upper_address_bits = ((boost::uint16_t)((data[0] & 0x00FF) << 8))\
+ ((boost::uint16_t)(data[1] & 0x00FF));
lower_address_bits = ((boost::uint16_t)((data[2] & 0x00FF) << 8))\
+ ((boost::uint16_t)(data[3] & 0x00FF));
fx3_control_write(FX3_FIRMWARE_LOAD, lower_address_bits, \
upper_address_bits, 0, 0);
if (load_img_msg) UHD_MSG(status) << " done" << std::endl;
}
/* If we receive an unknown record type, error out. */
else {
throw uhd::io_error("fx3_load_firmware: unsupported record type.");
}
}
/* There was no valid EOF. */
throw uhd::io_error("fx3_load_firmware: No EOF record found.");
}
void reset_fx3(void) {
unsigned char data[4];
memset(data, 0x00, sizeof(data));
const int bytes_to_send = sizeof(data);
int ret = fx3_control_write(B200_VREQ_FX3_RESET, 0x00, 0x00, data, bytes_to_send);
if (ret < 0)
throw uhd::io_error((boost::format("Failed to reset FX3 (%d: %s)") % ret % libusb_error_name(ret)).str());
else if (ret != bytes_to_send)
throw uhd::io_error((boost::format("Short write on reset FX3 (expecting: %d, returned: %d)") % bytes_to_send % ret).str());
}
void reset_gpif(void) {
unsigned char data[4];
memset(data, 0x00, sizeof(data));
const int bytes_to_send = sizeof(data);
int ret = fx3_control_write(B200_VREQ_GPIF_RESET, 0x00, 0x00, data, bytes_to_send);
if (ret < 0)
throw uhd::io_error((boost::format("Failed to reset GPIF (%d: %s)") % ret % libusb_error_name(ret)).str());
else if (ret != bytes_to_send)
throw uhd::io_error((boost::format("Short write on reset GPIF (expecting: %d, returned: %d)") % bytes_to_send % ret).str());
}
void set_fpga_reset_pin(const bool reset) {
unsigned char data[4];
memset(data, (reset)? 0xFF : 0x00, sizeof(data));
UHD_THROW_INVALID_CODE_PATH();
// Below is dead code as long as UHD_THROW_INVALID_CODE_PATH(); is declared above.
// It is preserved here in a comment in case it is needed later:
/*
const int bytes_to_send = sizeof(data);
int ret = fx3_control_write(B200_VREQ_FPGA_RESET, 0x00, 0x00, data, bytes_to_send);
if (ret < 0)
throw uhd::io_error((boost::format("Failed to reset FPGA (%d: %s)") % ret % libusb_error_name(ret)).str());
else if (ret != bytes_to_send)
throw uhd::io_error((boost::format("Short write on reset FPGA (expecting: %d, returned: %d)") % bytes_to_send % ret).str());
*/
}
boost::uint8_t get_usb_speed(void) {
unsigned char rx_data[1];
memset(rx_data, 0x00, sizeof(rx_data));
const int bytes_to_recv = sizeof(rx_data);
int ret = fx3_control_read(B200_VREQ_GET_USB, 0x00, 0x00, rx_data, bytes_to_recv);
if (ret < 0)
throw uhd::io_error((boost::format("Failed to get USB speed (%d: %s)") % ret % libusb_error_name(ret)).str());
else if (ret != bytes_to_recv)
throw uhd::io_error((boost::format("Short read on get USB speed (expecting: %d, returned: %d)") % bytes_to_recv % ret).str());
return boost::lexical_cast(rx_data[0]);
}
boost::uint8_t get_fx3_status(void) {
unsigned char rx_data[1];
memset(rx_data, 0x00, sizeof(rx_data));
const int bytes_to_recv = sizeof(rx_data);
int ret = fx3_control_read(B200_VREQ_GET_STATUS, 0x00, 0x00, rx_data, bytes_to_recv);
if (ret < 0)
throw uhd::io_error((boost::format("Failed to get FX3 status (%d: %s)") % ret % libusb_error_name(ret)).str());
else if (ret != bytes_to_recv)
throw uhd::io_error((boost::format("Short read on get FX3 status (expecting: %d, returned: %d)") % bytes_to_recv % ret).str());
return boost::lexical_cast(rx_data[0]);
}
boost::uint16_t get_compat_num(void) {
unsigned char rx_data[2];
memset(rx_data, 0x00, sizeof(rx_data));
const int bytes_to_recv = sizeof(rx_data);
int ret = fx3_control_read(B200_VREQ_GET_COMPAT , 0x00, 0x00, rx_data, bytes_to_recv);
if (ret < 0)
throw uhd::io_error((boost::format("Failed to get compat num (%d: %s)") % ret % libusb_error_name(ret)).str());
else if (ret != bytes_to_recv)
throw uhd::io_error((boost::format("Short read on get compat num (expecting: %d, returned: %d)") % bytes_to_recv % ret).str());
return (((uint16_t)rx_data[0]) << 8) | rx_data[1];
}
void usrp_get_firmware_hash(hash_type &hash) {
const int bytes_to_recv = 4;
if (sizeof(hash_type) != bytes_to_recv)
throw uhd::type_error((boost::format("hash_type is %d bytes but transfer length is %d bytes") % sizeof(hash_type) % bytes_to_recv).str());
int ret = fx3_control_read(B200_VREQ_GET_FW_HASH, 0x00, 0x00, (unsigned char*) &hash, bytes_to_recv, 500);
if (ret < 0)
throw uhd::io_error((boost::format("Failed to get firmware hash (%d: %s)") % ret % libusb_error_name(ret)).str());
else if (ret != bytes_to_recv)
throw uhd::io_error((boost::format("Short read on get firmware hash (expecting: %d, returned: %d)") % bytes_to_recv % ret).str());
}
void usrp_set_firmware_hash(hash_type hash) {
const int bytes_to_send = 4;
if (sizeof(hash_type) != bytes_to_send)
throw uhd::type_error((boost::format("hash_type is %d bytes but transfer length is %d bytes") % sizeof(hash_type) % bytes_to_send).str());
int ret = fx3_control_write(B200_VREQ_SET_FW_HASH, 0x00, 0x00, (unsigned char*) &hash, bytes_to_send);
if (ret < 0)
throw uhd::io_error((boost::format("Failed to set firmware hash (%d: %s)") % ret % libusb_error_name(ret)).str());
else if (ret != bytes_to_send)
throw uhd::io_error((boost::format("Short write on set firmware hash (expecting: %d, returned: %d)") % bytes_to_send % ret).str());
}
void usrp_get_fpga_hash(hash_type &hash) {
const int bytes_to_recv = 4;
if (sizeof(hash_type) != bytes_to_recv)
throw uhd::type_error((boost::format("hash_type is %d bytes but transfer length is %d bytes") % sizeof(hash_type) % bytes_to_recv).str());
int ret = fx3_control_read(B200_VREQ_GET_FPGA_HASH, 0x00, 0x00, (unsigned char*) &hash, bytes_to_recv, 500);
if (ret < 0)
throw uhd::io_error((boost::format("Failed to get FPGA hash (%d: %s)") % ret % libusb_error_name(ret)).str());
else if (ret != bytes_to_recv)
throw uhd::io_error((boost::format("Short read on get FPGA hash (expecting: %d, returned: %d)") % bytes_to_recv % ret).str());
}
void usrp_set_fpga_hash(hash_type hash) {
const int bytes_to_send = 4;
if (sizeof(hash_type) != bytes_to_send)
throw uhd::type_error((boost::format("hash_type is %d bytes but transfer length is %d bytes") % sizeof(hash_type) % bytes_to_send).str());
int ret = fx3_control_write(B200_VREQ_SET_FPGA_HASH, 0x00, 0x00, (unsigned char*) &hash, bytes_to_send);
if (ret < 0)
throw uhd::io_error((boost::format("Failed to set FPGA hash (%d: %s)") % ret % libusb_error_name(ret)).str());
else if (ret != bytes_to_send)
throw uhd::io_error((boost::format("Short write on set FPGA hash (expecting: %d, returned: %d)") % bytes_to_send % ret).str());
}
boost::uint32_t load_fpga(const std::string filestring) {
boost::uint8_t fx3_state = 0;
boost::uint32_t wait_count;
int ret = 0;
int bytes_to_xfer = 0;
const char *filename = filestring.c_str();
hash_type hash = generate_hash(filename);
hash_type loaded_hash; usrp_get_fpga_hash(loaded_hash);
if (hash == loaded_hash) return 0;
// Establish default largest possible control request transfer size based on operating USB speed
int transfer_size = VREQ_DEFAULT_SIZE;
int current_usb_speed = get_usb_speed();
if (current_usb_speed == 3)
transfer_size = VREQ_MAX_SIZE_USB3;
else if (current_usb_speed != 2)
throw uhd::io_error("load_fpga: get_usb_speed returned invalid USB speed (not 2 or 3).");
UHD_ASSERT_THROW(transfer_size <= VREQ_MAX_SIZE);
unsigned char out_buff[VREQ_MAX_SIZE];
// Request loopback read, which will indicate the firmware's current control request buffer size
// Make sure that if operating as USB2, requested length is within spec
int ntoread = std::min(transfer_size, (int)sizeof(out_buff));
int nread = fx3_control_read(B200_VREQ_LOOP, 0, 0, out_buff, ntoread, 1000);
if (nread < 0)
throw uhd::io_error((boost::format("load_fpga: unable to complete firmware loopback request (%d: %s)") % nread % libusb_error_name(nread)).str());
else if (nread != ntoread)
throw uhd::io_error((boost::format("load_fpga: short read on firmware loopback request (expecting: %d, returned: %d)") % ntoread % nread).str());
transfer_size = std::min(transfer_size, nread); // Select the smaller value
size_t file_size = 0;
{
std::ifstream file(filename, std::ios::in | std::ios::binary | std::ios::ate);
file_size = file.tellg();
}
std::ifstream file;
file.open(filename, std::ios::in | std::ios::binary);
if (!file.good()) {
throw uhd::io_error("load_fpga: cannot open FPGA input file.");
}
// Zero the hash, in case we abort programming another image and revert to the previously programmed image
usrp_set_fpga_hash(0);
memset(out_buff, 0x00, sizeof(out_buff));
bytes_to_xfer = 1;
ret = fx3_control_write(B200_VREQ_FPGA_CONFIG, 0, 0, out_buff, bytes_to_xfer, 1000);
if (ret < 0)
throw uhd::io_error((boost::format("Failed to start FPGA config (%d: %s)") % ret % libusb_error_name(ret)).str());
else if (ret != bytes_to_xfer)
throw uhd::io_error((boost::format("Short write on start FPGA config (expecting: %d, returned: %d)") % bytes_to_xfer % ret).str());
wait_count = 0;
do {
fx3_state = get_fx3_status();
if((wait_count >= 500) || (fx3_state == FX3_STATE_ERROR) || (fx3_state == FX3_STATE_UNDEFINED)) {
return fx3_state;
}
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
wait_count++;
} while(fx3_state != FX3_STATE_FPGA_READY);
if (load_img_msg) UHD_MSG(status) << "Loading FPGA image: " \
<< filestring << "..." << std::flush;
bytes_to_xfer = 1;
ret = fx3_control_write(B200_VREQ_FPGA_START, 0, 0, out_buff, bytes_to_xfer, 1000);
if (ret < 0)
throw uhd::io_error((boost::format("Failed to start FPGA bitstream (%d: %s)") % ret % libusb_error_name(ret)).str());
else if (ret != bytes_to_xfer)
throw uhd::io_error((boost::format("Short write on start FPGA bitstream (expecting: %d, returned: %d)") % bytes_to_xfer % ret).str());
wait_count = 0;
do {
fx3_state = get_fx3_status();
if((wait_count >= 1000) || (fx3_state == FX3_STATE_ERROR) || (fx3_state == FX3_STATE_UNDEFINED)) {
return fx3_state;
}
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
wait_count++;
} while(fx3_state != FX3_STATE_CONFIGURING_FPGA);
size_t bytes_sent = 0;
while (!file.eof()) {
file.read((char *) out_buff, transfer_size);
const std::streamsize n = file.gcount();
if(n == 0)
continue;
boost::uint16_t transfer_count = boost::uint16_t(n);
/* Send the data to the device. */
int nwritten = fx3_control_write(B200_VREQ_FPGA_DATA, 0, 0, out_buff, transfer_count, 5000);
if (nwritten < 0)
throw uhd::io_error((boost::format("load_fpga: cannot write bitstream to FX3 (%d: %s)") % nwritten % libusb_error_name(nwritten)).str());
else if (nwritten != transfer_count)
throw uhd::io_error((boost::format("load_fpga: short write while transferring bitstream to FX3 (expecting: %d, returned: %d)") % transfer_count % nwritten).str());
if (load_img_msg)
{
if (bytes_sent == 0) UHD_MSG(status) << " 0%" << std::flush;
const size_t percent_before = size_t((bytes_sent*100)/file_size);
bytes_sent += transfer_count;
const size_t percent_after = size_t((bytes_sent*100)/file_size);
if (percent_before/10 != percent_after/10)
{
UHD_MSG(status) << "\b\b\b\b" << std::setw(3) << percent_after << "%" << std::flush;
}
}
}
file.close();
wait_count = 0;
do {
fx3_state = get_fx3_status();
if((wait_count >= 500) || (fx3_state == FX3_STATE_ERROR) || (fx3_state == FX3_STATE_UNDEFINED)) {
return fx3_state;
}
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
wait_count++;
} while(fx3_state != FX3_STATE_RUNNING);
usrp_set_fpga_hash(hash);
if (load_img_msg)
UHD_MSG(status) << "\b\b\b\b done" << std::endl;
return 0;
}
private:
usb_control::sptr _usb_ctrl;
};
std::string b200_iface::fx3_state_string(boost::uint8_t state)
{
switch (state)
{
case FX3_STATE_FPGA_READY:
return std::string("Ready");
case FX3_STATE_CONFIGURING_FPGA:
return std::string("Configuring FPGA");
case FX3_STATE_BUSY:
return std::string("Busy");
case FX3_STATE_RUNNING:
return std::string("Running");
case FX3_STATE_UNCONFIGURED:
return std::string("Unconfigured");
case FX3_STATE_ERROR:
return std::string("Error");
default:
break;
}
return std::string("Unknown");
}
/***********************************************************************
* Make an instance of the implementation
**********************************************************************/
b200_iface::sptr b200_iface::make(usb_control::sptr usb_ctrl)
{
return sptr(new b200_iface_impl(usb_ctrl));
}