// // Copyright 2011,2014,2016 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include "clock_ctrl.hpp" #include "ad9522_regs.hpp" #include "b100_regs.hpp" //spi slave constants #include #include #include #include #include #include #include #include #include #include #include #include using namespace uhd; /*********************************************************************** * Constants **********************************************************************/ static const bool ENABLE_THE_TEST_OUT = true; static const double REFERENCE_INPUT_RATE = 10e6; /*********************************************************************** * Helpers **********************************************************************/ template static void set_clock_divider( size_t divider, div_type& low, div_type& high, bypass_type& bypass) { high = divider / 2 - 1; low = divider - high - 2; bypass = (divider == 1) ? 1 : 0; } /*********************************************************************** * Clock rate calculation stuff: * Using the internal VCO between 1400 and 1800 MHz **********************************************************************/ struct clock_settings_type { size_t ref_clock_doubler, r_counter, a_counter, b_counter, prescaler, vco_divider, chan_divider; size_t get_n_counter(void) const { return prescaler * b_counter + a_counter; } double get_ref_rate(void) const { return REFERENCE_INPUT_RATE * ref_clock_doubler; } double get_vco_rate(void) const { return get_ref_rate() / r_counter * get_n_counter(); } double get_chan_rate(void) const { return get_vco_rate() / vco_divider; } double get_out_rate(void) const { return get_chan_rate() / chan_divider; } std::string to_pp_string(void) const { return str(boost::format(" r_counter: %d\n" " a_counter: %d\n" " b_counter: %d\n" " prescaler: %d\n" " vco_divider: %d\n" " chan_divider: %d\n" " vco_rate: %fMHz\n" " chan_rate: %fMHz\n" " out_rate: %fMHz\n") % r_counter % a_counter % b_counter % prescaler % vco_divider % chan_divider % (get_vco_rate() / 1e6) % (get_chan_rate() / 1e6) % (get_out_rate() / 1e6)); } }; //! gives the greatest divisor of num between 1 and max inclusive template static inline T greatest_divisor(T num, T max) { for (T i = max; i > 1; i--) { if (num % i == 0) { return i; } } return 1; } //! gives the least divisor of num between min and num exclusive template static inline T least_divisor(T num, T min) { for (T i = min; i < num; i++) { if (num % i == 0) { return i; } } return 1; } static clock_settings_type get_clock_settings(double rate) { clock_settings_type cs; cs.ref_clock_doubler = 2; // always doubling cs.prescaler = 8; // set to 8 when input is under 2400 MHz // basic formulas used below: // out_rate*X = ref_rate*Y // X = i*ref_rate/gcd // Y = i*out_rate/gcd // X = chan_div * vco_div * R // Y = P*B + A const uint64_t out_rate = uint64_t(rate); const uint64_t ref_rate = uint64_t(cs.get_ref_rate()); const size_t gcd = uhd::narrow_cast((uhd::math::gcd(ref_rate, out_rate))); for (size_t i = 1; i <= 100; i++) { const size_t X = size_t(i * ref_rate / gcd); const size_t Y = size_t(i * out_rate / gcd); // determine A and B (P is fixed) cs.b_counter = Y / cs.prescaler; cs.a_counter = Y - cs.b_counter * cs.prescaler; static const double vco_bound_pad = 100e6; for ( // calculate an r divider that fits into the bounds of the vco cs.r_counter = size_t(cs.get_n_counter() * cs.get_ref_rate() / (1800e6 - vco_bound_pad)); cs.r_counter <= size_t(cs.get_n_counter() * cs.get_ref_rate() / (1400e6 + vco_bound_pad)) and cs.r_counter > 0; cs.r_counter++) { // determine chan_div and vco_div // and fill in that order of preference cs.chan_divider = greatest_divisor(X / cs.r_counter, 32); cs.vco_divider = greatest_divisor(X / cs.chan_divider / cs.r_counter, 6); // avoid a vco divider of 1 (if possible) if (cs.vco_divider == 1) { cs.vco_divider = least_divisor(cs.chan_divider, 2); cs.chan_divider /= cs.vco_divider; } UHD_LOGGER_TRACE("B100") << "gcd: " << gcd << " X: " << X << " Y: " << Y << cs.to_pp_string(); // filter limits on the counters if (cs.vco_divider == 1) continue; if (cs.r_counter >= (1 << 14)) continue; if (cs.b_counter == 2) continue; if (cs.b_counter == 1 and cs.a_counter != 0) continue; if (cs.b_counter >= (1 << 13)) continue; if (cs.a_counter >= (1 << 6)) continue; if (cs.get_vco_rate() > 1800e6 - vco_bound_pad) continue; if (cs.get_vco_rate() < 1400e6 + vco_bound_pad) continue; if (cs.get_out_rate() != rate) continue; UHD_LOGGER_TRACE("B100") << "USRP-B100 clock control: " << i << cs.to_pp_string(); return cs; } } throw uhd::value_error(str( boost::format( "USRP-B100 clock control: could not calculate settings for clock rate %fMHz") % (rate / 1e6))); } b100_clock_ctrl::~b100_clock_ctrl(void) { /* NOP */ } /*********************************************************************** * Clock Control Implementation **********************************************************************/ class b100_clock_ctrl_impl : public b100_clock_ctrl { public: b100_clock_ctrl_impl(i2c_iface::sptr iface, double master_clock_rate) { _iface = iface; _chan_rate = 0.0; _out_rate = 0.0; // perform soft-reset _ad9522_regs.soft_reset = 1; this->send_reg(0x000); this->latch_regs(); _ad9522_regs.soft_reset = 0; // init the clock gen registers _ad9522_regs.sdo_active = ad9522_regs_t::SDO_ACTIVE_SDO_SDIO; _ad9522_regs.enb_stat_eeprom_at_stat_pin = 0; // use status pin _ad9522_regs.status_pin_control = 0x1; // n divider _ad9522_regs.ld_pin_control = 0x00; // dld _ad9522_regs.refmon_pin_control = 0x12; // show ref2 _ad9522_regs.lock_detect_counter = ad9522_regs_t::LOCK_DETECT_COUNTER_16CYC; this->use_internal_ref(); this->set_fpga_clock_rate(master_clock_rate); // initialize to something this->enable_fpga_clock(true); this->enable_test_clock(ENABLE_THE_TEST_OUT); this->enable_rx_dboard_clock(false); this->enable_tx_dboard_clock(false); } ~b100_clock_ctrl_impl(void) { UHD_SAFE_CALL(this->enable_test_clock(ENABLE_THE_TEST_OUT); this->enable_rx_dboard_clock(false); this->enable_tx_dboard_clock(false); // this->enable_fpga_clock(false); //FIXME ) } /*********************************************************************** * Clock rate control: * - set clock rate w/ internal VCO * - set clock rate w/ external VCXO **********************************************************************/ void set_clock_settings_with_internal_vco(double rate) { const clock_settings_type cs = get_clock_settings(rate); // set the rates to private variables so the implementation knows! _chan_rate = cs.get_chan_rate(); _out_rate = cs.get_out_rate(); _ad9522_regs.enable_clock_doubler = (cs.ref_clock_doubler == 2) ? 1 : 0; _ad9522_regs.set_r_counter(cs.r_counter); _ad9522_regs.a_counter = cs.a_counter; _ad9522_regs.set_b_counter(cs.b_counter); UHD_ASSERT_THROW(cs.prescaler == 8); // assumes this below: _ad9522_regs.prescaler_p = ad9522_regs_t::PRESCALER_P_DIV8_9; _ad9522_regs.pll_power_down = ad9522_regs_t::PLL_POWER_DOWN_NORMAL; _ad9522_regs.cp_current = ad9522_regs_t::CP_CURRENT_1_2MA; _ad9522_regs.bypass_vco_divider = 0; switch (cs.vco_divider) { case 1: _ad9522_regs.vco_divider = ad9522_regs_t::VCO_DIVIDER_DIV1; break; case 2: _ad9522_regs.vco_divider = ad9522_regs_t::VCO_DIVIDER_DIV2; break; case 3: _ad9522_regs.vco_divider = ad9522_regs_t::VCO_DIVIDER_DIV3; break; case 4: _ad9522_regs.vco_divider = ad9522_regs_t::VCO_DIVIDER_DIV4; break; case 5: _ad9522_regs.vco_divider = ad9522_regs_t::VCO_DIVIDER_DIV5; break; case 6: _ad9522_regs.vco_divider = ad9522_regs_t::VCO_DIVIDER_DIV6; break; } _ad9522_regs.select_vco_or_clock = ad9522_regs_t::SELECT_VCO_OR_CLOCK_VCO; // setup fpga master clock _ad9522_regs.out0_format = ad9522_regs_t::OUT0_FORMAT_LVDS; set_clock_divider(cs.chan_divider, _ad9522_regs.divider0_low_cycles, _ad9522_regs.divider0_high_cycles, _ad9522_regs.divider0_bypass); // setup codec clock _ad9522_regs.out3_format = ad9522_regs_t::OUT3_FORMAT_LVDS; set_clock_divider(cs.chan_divider, _ad9522_regs.divider1_low_cycles, _ad9522_regs.divider1_high_cycles, _ad9522_regs.divider1_bypass); this->send_all_regs(); calibrate_now(); } void set_clock_settings_with_external_vcxo(double rate) { // set the rates to private variables so the implementation knows! _chan_rate = rate; _out_rate = rate; _ad9522_regs.enable_clock_doubler = 1; // doubler always on const double ref_rate = REFERENCE_INPUT_RATE * 2; // bypass prescaler such that N = B long gcd = uhd::math::gcd(long(ref_rate), long(rate)); _ad9522_regs.set_r_counter(int(ref_rate / gcd)); _ad9522_regs.a_counter = 0; _ad9522_regs.set_b_counter(int(rate / gcd)); _ad9522_regs.prescaler_p = ad9522_regs_t::PRESCALER_P_DIV1; // setup external vcxo _ad9522_regs.pll_power_down = ad9522_regs_t::PLL_POWER_DOWN_NORMAL; _ad9522_regs.cp_current = ad9522_regs_t::CP_CURRENT_1_2MA; _ad9522_regs.bypass_vco_divider = 1; _ad9522_regs.select_vco_or_clock = ad9522_regs_t::SELECT_VCO_OR_CLOCK_EXTERNAL; // setup fpga master clock _ad9522_regs.out0_format = ad9522_regs_t::OUT0_FORMAT_LVDS; _ad9522_regs.divider0_bypass = 1; // setup codec clock _ad9522_regs.out3_format = ad9522_regs_t::OUT3_FORMAT_LVDS; _ad9522_regs.divider1_bypass = 1; this->send_all_regs(); } void set_fpga_clock_rate(double rate) { if (_out_rate == rate) return; if (rate == 61.44e6) set_clock_settings_with_external_vcxo(rate); else set_clock_settings_with_internal_vco(rate); // clock rate changed! update dboard clocks and FPGA ticks per second set_rx_dboard_clock_rate(rate); set_tx_dboard_clock_rate(rate); } double get_fpga_clock_rate(void) { return this->_out_rate; } /*********************************************************************** * FPGA clock enable **********************************************************************/ void enable_fpga_clock(bool enb) { _ad9522_regs.out0_format = ad9522_regs_t::OUT0_FORMAT_LVDS; _ad9522_regs.out0_lvds_power_down = !enb; this->send_reg(0x0F0); this->latch_regs(); } /*********************************************************************** * Special test clock output **********************************************************************/ void enable_test_clock(bool enb) { // setup test clock (same divider as codec clock) _ad9522_regs.out4_format = ad9522_regs_t::OUT4_FORMAT_CMOS; _ad9522_regs.out4_cmos_configuration = (enb) ? ad9522_regs_t::OUT4_CMOS_CONFIGURATION_A_ON : ad9522_regs_t::OUT4_CMOS_CONFIGURATION_OFF; this->send_reg(0x0F4); this->latch_regs(); } /*********************************************************************** * RX Dboard Clock Control (output 9, divider 3) **********************************************************************/ void enable_rx_dboard_clock(bool enb) { _ad9522_regs.out9_format = ad9522_regs_t::OUT9_FORMAT_LVDS; _ad9522_regs.out9_lvds_power_down = !enb; this->send_reg(0x0F9); this->latch_regs(); } std::vector get_rx_dboard_clock_rates(void) { std::vector rates; for (size_t div = 1; div <= 16 + 16; div++) rates.push_back(this->_chan_rate / div); return rates; } void set_rx_dboard_clock_rate(double rate) { assert_has(get_rx_dboard_clock_rates(), rate, "rx dboard clock rate"); _rx_clock_rate = rate; size_t divider = size_t(this->_chan_rate / rate); // set the divider registers set_clock_divider(divider, _ad9522_regs.divider3_low_cycles, _ad9522_regs.divider3_high_cycles, _ad9522_regs.divider3_bypass); this->send_reg(0x199); this->send_reg(0x19a); this->soft_sync(); } double get_rx_clock_rate(void) { return _rx_clock_rate; } /*********************************************************************** * TX Dboard Clock Control (output 6, divider 2) **********************************************************************/ void enable_tx_dboard_clock(bool enb) { _ad9522_regs.out6_format = ad9522_regs_t::OUT6_FORMAT_LVDS; _ad9522_regs.out6_lvds_power_down = !enb; this->send_reg(0x0F6); this->latch_regs(); } std::vector get_tx_dboard_clock_rates(void) { return get_rx_dboard_clock_rates(); // same master clock, same dividers... } void set_tx_dboard_clock_rate(double rate) { assert_has(get_tx_dboard_clock_rates(), rate, "tx dboard clock rate"); _tx_clock_rate = rate; size_t divider = size_t(this->_chan_rate / rate); // set the divider registers set_clock_divider(divider, _ad9522_regs.divider2_low_cycles, _ad9522_regs.divider2_high_cycles, _ad9522_regs.divider2_bypass); this->send_reg(0x196); this->send_reg(0x197); this->soft_sync(); } double get_tx_clock_rate(void) { return _tx_clock_rate; } /*********************************************************************** * Clock reference control **********************************************************************/ void use_internal_ref(void) { _ad9522_regs.enable_ref2 = 1; _ad9522_regs.enable_ref1 = 0; _ad9522_regs.select_ref = ad9522_regs_t::SELECT_REF_REF2; _ad9522_regs.enb_auto_ref_switchover = ad9522_regs_t::ENB_AUTO_REF_SWITCHOVER_MANUAL; this->send_reg(0x01C); this->latch_regs(); } void use_external_ref(void) { _ad9522_regs.enable_ref2 = 0; _ad9522_regs.enable_ref1 = 1; _ad9522_regs.select_ref = ad9522_regs_t::SELECT_REF_REF1; _ad9522_regs.enb_auto_ref_switchover = ad9522_regs_t::ENB_AUTO_REF_SWITCHOVER_MANUAL; this->send_reg(0x01C); this->latch_regs(); } void use_auto_ref(void) { _ad9522_regs.enable_ref2 = 1; _ad9522_regs.enable_ref1 = 1; _ad9522_regs.select_ref = ad9522_regs_t::SELECT_REF_REF1; _ad9522_regs.enb_auto_ref_switchover = ad9522_regs_t::ENB_AUTO_REF_SWITCHOVER_AUTO; this->send_reg(0x01C); this->latch_regs(); } bool get_locked(void) { static const uint8_t addr = 0x01F; uint32_t reg = this->read_reg(addr); _ad9522_regs.set_reg(addr, reg); return _ad9522_regs.digital_lock_detect != 0; } private: i2c_iface::sptr _iface; ad9522_regs_t _ad9522_regs; double _out_rate; // rate at the fpga and codec double _chan_rate; // rate before final dividers double _rx_clock_rate, _tx_clock_rate; void latch_regs(void) { _ad9522_regs.io_update = 1; this->send_reg(0x232); } void send_reg(uint16_t addr) { uint32_t reg = _ad9522_regs.get_write_reg(addr); UHD_LOGGER_TRACE("B100") << "clock control write reg: " << std::hex << reg; byte_vector_t buf; buf.push_back(uint8_t(reg >> 16)); buf.push_back(uint8_t(reg >> 8)); buf.push_back(uint8_t(reg & 0xff)); _iface->write_i2c(0x5C, buf); } uint8_t read_reg(uint16_t addr) { byte_vector_t buf; buf.push_back(uint8_t(addr >> 8)); buf.push_back(uint8_t(addr & 0xff)); _iface->write_i2c(0x5C, buf); buf = _iface->read_i2c(0x5C, 1); return uint32_t(buf[0] & 0xFF); } void calibrate_now(void) { // vco calibration routine: _ad9522_regs.vco_calibration_now = 0; this->send_reg(0x18); this->latch_regs(); _ad9522_regs.vco_calibration_now = 1; this->send_reg(0x18); this->latch_regs(); // wait for calibration done: static const uint8_t addr = 0x01F; for (size_t ms10 = 0; ms10 < 100; ms10++) { std::this_thread::sleep_for(std::chrono::milliseconds(10)); uint32_t reg = read_reg(addr); _ad9522_regs.set_reg(addr, reg); if (_ad9522_regs.vco_calibration_finished) goto wait_for_ld; } UHD_LOGGER_ERROR("B100") << "USRP-B100 clock control: VCO calibration timeout"; wait_for_ld: // wait for digital lock detect: for (size_t ms10 = 0; ms10 < 100; ms10++) { std::this_thread::sleep_for(std::chrono::milliseconds(10)); uint32_t reg = read_reg(addr); _ad9522_regs.set_reg(addr, reg); if (_ad9522_regs.digital_lock_detect) return; } UHD_LOGGER_ERROR("B100") << "USRP-B100 clock control: lock detection timeout"; } void soft_sync(void) { _ad9522_regs.soft_sync = 1; this->send_reg(0x230); this->latch_regs(); _ad9522_regs.soft_sync = 0; this->send_reg(0x230); this->latch_regs(); } void send_all_regs(void) { // setup a list of register ranges to write typedef std::pair range_t; static const std::vector ranges{range_t(0x000, 0x000), range_t(0x010, 0x01F), range_t(0x0F0, 0x0FD), range_t(0x190, 0x19B), range_t(0x1E0, 0x1E1), range_t(0x230, 0x230)}; // write initial register values and latch/update for (const range_t& range : ranges) { for (uint16_t addr = range.first; addr <= range.second; addr++) { this->send_reg(addr); } } this->latch_regs(); } }; /*********************************************************************** * Clock Control Make **********************************************************************/ b100_clock_ctrl::sptr b100_clock_ctrl::make( i2c_iface::sptr iface, double master_clock_rate) { return sptr(new b100_clock_ctrl_impl(iface, master_clock_rate)); }