//
// Copyright 2012 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "apply_corrections.hpp"
#include "b100_impl.hpp"
#include "b100_ctrl.hpp"
#include "fpga_regs_standard.h"
#include "usrp_i2c_addr.h"
#include "usrp_commands.h"
#include
#include "ctrl_packet.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "b100_regs.hpp"
#include
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::transport;
const boost::uint16_t B100_VENDOR_ID = 0x2500;
const boost::uint16_t B100_PRODUCT_ID = 0x0002;
const boost::uint16_t FX2_VENDOR_ID = 0x04b4;
const boost::uint16_t FX2_PRODUCT_ID = 0x8613;
static const boost::posix_time::milliseconds REENUMERATION_TIMEOUT_MS(3000);
/***********************************************************************
* Discovery
**********************************************************************/
static device_addrs_t b100_find(const device_addr_t &hint)
{
device_addrs_t b100_addrs;
//return an empty list of addresses when type is set to non-b100
if (hint.has_key("type") and hint["type"] != "b100") return b100_addrs;
//Return an empty list of addresses when an address is specified,
//since an address is intended for a different, non-USB, device.
if (hint.has_key("addr")) return b100_addrs;
unsigned int vid, pid;
if(hint.has_key("vid") && hint.has_key("pid") && hint.has_key("type") && hint["type"] == "b100") {
sscanf(hint.get("vid").c_str(), "%x", &vid);
sscanf(hint.get("pid").c_str(), "%x", &pid);
} else {
vid = B100_VENDOR_ID;
pid = B100_PRODUCT_ID;
}
// Important note:
// The get device list calls are nested inside the for loop.
// This allows the usb guts to decontruct when not in use,
// so that re-enumeration after fw load can occur successfully.
// This requirement is a courtesy of libusb1.0 on windows.
//find the usrps and load firmware
size_t found = 0;
BOOST_FOREACH(usb_device_handle::sptr handle, usb_device_handle::get_device_list(vid, pid)) {
//extract the firmware path for the b100
std::string b100_fw_image;
try{
b100_fw_image = find_image_path(hint.get("fw", B100_FW_FILE_NAME));
}
catch(...){
UHD_MSG(warning) << boost::format(
"Could not locate B100 firmware.\n"
"Please install the images package.\n"
);
return b100_addrs;
}
UHD_LOG << "the firmware image: " << b100_fw_image << std::endl;
usb_control::sptr control;
try{control = usb_control::make(handle, 0);}
catch(const uhd::exception &){continue;} //ignore claimed
fx2_ctrl::make(control)->usrp_load_firmware(b100_fw_image);
found++;
}
//get descriptors again with serial number, but using the initialized VID/PID now since we have firmware
vid = B100_VENDOR_ID;
pid = B100_PRODUCT_ID;
const boost::system_time timeout_time = boost::get_system_time() + REENUMERATION_TIMEOUT_MS;
//search for the device until found or timeout
while (boost::get_system_time() < timeout_time and b100_addrs.empty() and found != 0)
{
BOOST_FOREACH(usb_device_handle::sptr handle, usb_device_handle::get_device_list(vid, pid))
{
usb_control::sptr control;
try{control = usb_control::make(handle, 0);}
catch(const uhd::exception &){continue;} //ignore claimed
fx2_ctrl::sptr fx2_ctrl = fx2_ctrl::make(control);
const mboard_eeprom_t mb_eeprom = mboard_eeprom_t(*fx2_ctrl, mboard_eeprom_t::MAP_B100);
device_addr_t new_addr;
new_addr["type"] = "b100";
new_addr["name"] = mb_eeprom["name"];
new_addr["serial"] = handle->get_serial();
//this is a found b100 when the hint serial and name match or blank
if (
(not hint.has_key("name") or hint["name"] == new_addr["name"]) and
(not hint.has_key("serial") or hint["serial"] == new_addr["serial"])
){
b100_addrs.push_back(new_addr);
}
}
}
return b100_addrs;
}
/***********************************************************************
* Make
**********************************************************************/
static device::sptr b100_make(const device_addr_t &device_addr){
return device::sptr(new b100_impl(device_addr));
}
UHD_STATIC_BLOCK(register_b100_device){
device::register_device(&b100_find, &b100_make);
}
/***********************************************************************
* Structors
**********************************************************************/
b100_impl::b100_impl(const device_addr_t &device_addr){
_tree = property_tree::make();
//extract the FPGA path for the B100
std::string b100_fpga_image = find_image_path(
device_addr.has_key("fpga")? device_addr["fpga"] : B100_FPGA_FILE_NAME
);
//try to match the given device address with something on the USB bus
std::vector device_list =
usb_device_handle::get_device_list(B100_VENDOR_ID, B100_PRODUCT_ID);
//locate the matching handle in the device list
usb_device_handle::sptr handle;
BOOST_FOREACH(usb_device_handle::sptr dev_handle, device_list) {
if (dev_handle->get_serial() == device_addr["serial"]){
handle = dev_handle;
break;
}
}
UHD_ASSERT_THROW(handle.get() != NULL); //better be found
//create control objects
usb_control::sptr fx2_transport = usb_control::make(handle, 0);
_fx2_ctrl = fx2_ctrl::make(fx2_transport);
this->check_fw_compat(); //check after making fx2
//-- setup clock after making fx2 and before loading fpga --//
_clock_ctrl = b100_clock_ctrl::make(_fx2_ctrl, device_addr.cast("master_clock_rate", B100_DEFAULT_TICK_RATE));
//load FPGA image, gpif is disabled while loading
this->enable_gpif(false);
_fx2_ctrl->usrp_load_fpga(b100_fpga_image);
_fx2_ctrl->usrp_fpga_reset(false); //active low reset
_fx2_ctrl->usrp_fpga_reset(true);
this->enable_gpif(true);
//create the control transport
device_addr_t ctrl_xport_args;
ctrl_xport_args["recv_frame_size"] = boost::lexical_cast(CTRL_PACKET_LENGTH);
ctrl_xport_args["num_recv_frames"] = "16";
ctrl_xport_args["send_frame_size"] = boost::lexical_cast(CTRL_PACKET_LENGTH);
ctrl_xport_args["num_send_frames"] = "4";
_ctrl_transport = usb_zero_copy::make(
handle,
4, 8, //interface, endpoint
3, 4, //interface, endpoint
ctrl_xport_args
);
while (_ctrl_transport->get_recv_buff(0.0)){} //flush ctrl xport
////////////////////////////////////////////////////////////////////
// Initialize FPGA wishbone communication
////////////////////////////////////////////////////////////////////
_fpga_ctrl = b100_ctrl::make(_ctrl_transport);
_fpga_ctrl->poke32(B100_REG_GLOBAL_RESET, 0); //global fpga reset
this->check_fpga_compat(); //check after reset and making control
////////////////////////////////////////////////////////////////////
// Initialize peripherals after reset
////////////////////////////////////////////////////////////////////
_fpga_i2c_ctrl = i2c_core_100::make(_fpga_ctrl, B100_REG_SLAVE(3));
_fpga_spi_ctrl = spi_core_100::make(_fpga_ctrl, B100_REG_SLAVE(2));
////////////////////////////////////////////////////////////////////
// Create data transport
// This happens after FPGA ctrl instantiated so any junk that might
// be in the FPGAs buffers doesn't get pulled into the transport
// before being cleared.
////////////////////////////////////////////////////////////////////
device_addr_t data_xport_args;
data_xport_args["recv_frame_size"] = device_addr.get("recv_frame_size", "16384");
data_xport_args["num_recv_frames"] = device_addr.get("num_recv_frames", "16");
data_xport_args["send_frame_size"] = device_addr.get("send_frame_size", "16384");
data_xport_args["num_send_frames"] = device_addr.get("num_send_frames", "16");
_data_transport = usb_zero_copy::make_wrapper(
usb_zero_copy::make(
handle, // identifier
2, 6, // IN interface, endpoint
1, 2, // OUT interface, endpoint
data_xport_args // param hints
),
B100_MAX_PKT_BYTE_LIMIT
);
while (_data_transport->get_recv_buff(0.0)){} //flush data xport
////////////////////////////////////////////////////////////////////
// Initialize the properties tree
////////////////////////////////////////////////////////////////////
_tree->create("/name").set("B-Series Device");
const fs_path mb_path = "/mboards/0";
_tree->create(mb_path / "name").set("B100 (B-Hundo)");
_tree->create(mb_path / "load_eeprom")
.subscribe(boost::bind(&fx2_ctrl::usrp_load_eeprom, _fx2_ctrl, _1));
////////////////////////////////////////////////////////////////////
// setup the mboard eeprom
////////////////////////////////////////////////////////////////////
const mboard_eeprom_t mb_eeprom(*_fx2_ctrl, mboard_eeprom_t::MAP_B100);
_tree->create(mb_path / "eeprom")
.set(mb_eeprom)
.subscribe(boost::bind(&b100_impl::set_mb_eeprom, this, _1));
////////////////////////////////////////////////////////////////////
// create clock control objects
////////////////////////////////////////////////////////////////////
//^^^ clock created up top, just reg props here... ^^^
_tree->create(mb_path / "tick_rate")
.publish(boost::bind(&b100_clock_ctrl::get_fpga_clock_rate, _clock_ctrl))
.subscribe(boost::bind(&b100_impl::update_tick_rate, this, _1));
////////////////////////////////////////////////////////////////////
// create codec control objects
////////////////////////////////////////////////////////////////////
_codec_ctrl = b100_codec_ctrl::make(_fpga_spi_ctrl);
const fs_path rx_codec_path = mb_path / "rx_codecs/A";
const fs_path tx_codec_path = mb_path / "tx_codecs/A";
_tree->create(rx_codec_path / "name").set("ad9522");
_tree->create(rx_codec_path / "gains/pga/range").set(b100_codec_ctrl::rx_pga_gain_range);
_tree->create(rx_codec_path / "gains/pga/value")
.coerce(boost::bind(&b100_impl::update_rx_codec_gain, this, _1));
_tree->create(tx_codec_path / "name").set("ad9522");
_tree->create(tx_codec_path / "gains/pga/range").set(b100_codec_ctrl::tx_pga_gain_range);
_tree->create(tx_codec_path / "gains/pga/value")
.subscribe(boost::bind(&b100_codec_ctrl::set_tx_pga_gain, _codec_ctrl, _1))
.publish(boost::bind(&b100_codec_ctrl::get_tx_pga_gain, _codec_ctrl));
////////////////////////////////////////////////////////////////////
// and do the misc mboard sensors
////////////////////////////////////////////////////////////////////
_tree->create(mb_path / "sensors/ref_locked")
.publish(boost::bind(&b100_impl::get_ref_locked, this));
////////////////////////////////////////////////////////////////////
// create frontend control objects
////////////////////////////////////////////////////////////////////
_rx_fe = rx_frontend_core_200::make(_fpga_ctrl, B100_REG_SR_ADDR(B100_SR_RX_FRONT));
_tx_fe = tx_frontend_core_200::make(_fpga_ctrl, B100_REG_SR_ADDR(B100_SR_TX_FRONT));
_tree->create(mb_path / "rx_subdev_spec")
.subscribe(boost::bind(&b100_impl::update_rx_subdev_spec, this, _1));
_tree->create(mb_path / "tx_subdev_spec")
.subscribe(boost::bind(&b100_impl::update_tx_subdev_spec, this, _1));
const fs_path rx_fe_path = mb_path / "rx_frontends" / "A";
const fs_path tx_fe_path = mb_path / "tx_frontends" / "A";
_tree->create >(rx_fe_path / "dc_offset" / "value")
.coerce(boost::bind(&rx_frontend_core_200::set_dc_offset, _rx_fe, _1))
.set(std::complex(0.0, 0.0));
_tree->create(rx_fe_path / "dc_offset" / "enable")
.subscribe(boost::bind(&rx_frontend_core_200::set_dc_offset_auto, _rx_fe, _1))
.set(true);
_tree->create >(rx_fe_path / "iq_balance" / "value")
.subscribe(boost::bind(&rx_frontend_core_200::set_iq_balance, _rx_fe, _1))
.set(std::polar(1.0, 0.0));
_tree->create >(tx_fe_path / "dc_offset" / "value")
.coerce(boost::bind(&tx_frontend_core_200::set_dc_offset, _tx_fe, _1))
.set(std::complex(0.0, 0.0));
_tree->create >(tx_fe_path / "iq_balance" / "value")
.subscribe(boost::bind(&tx_frontend_core_200::set_iq_balance, _tx_fe, _1))
.set(std::polar(1.0, 0.0));
////////////////////////////////////////////////////////////////////
// create rx dsp control objects
////////////////////////////////////////////////////////////////////
_rx_dsps.push_back(rx_dsp_core_200::make(
_fpga_ctrl, B100_REG_SR_ADDR(B100_SR_RX_DSP0), B100_REG_SR_ADDR(B100_SR_RX_CTRL0), B100_RX_SID_BASE + 0
));
_rx_dsps.push_back(rx_dsp_core_200::make(
_fpga_ctrl, B100_REG_SR_ADDR(B100_SR_RX_DSP1), B100_REG_SR_ADDR(B100_SR_RX_CTRL1), B100_RX_SID_BASE + 1
));
for (size_t dspno = 0; dspno < _rx_dsps.size(); dspno++){
_rx_dsps[dspno]->set_link_rate(B100_LINK_RATE_BPS);
_tree->access(mb_path / "tick_rate")
.subscribe(boost::bind(&rx_dsp_core_200::set_tick_rate, _rx_dsps[dspno], _1));
fs_path rx_dsp_path = mb_path / str(boost::format("rx_dsps/%u") % dspno);
_tree->create(rx_dsp_path / "rate/range")
.publish(boost::bind(&rx_dsp_core_200::get_host_rates, _rx_dsps[dspno]));
_tree->create(rx_dsp_path / "rate/value")
.set(1e6) //some default
.coerce(boost::bind(&rx_dsp_core_200::set_host_rate, _rx_dsps[dspno], _1))
.subscribe(boost::bind(&b100_impl::update_rx_samp_rate, this, dspno, _1));
_tree->create(rx_dsp_path / "freq/value")
.coerce(boost::bind(&rx_dsp_core_200::set_freq, _rx_dsps[dspno], _1));
_tree->create(rx_dsp_path / "freq/range")
.publish(boost::bind(&rx_dsp_core_200::get_freq_range, _rx_dsps[dspno]));
_tree->create(rx_dsp_path / "stream_cmd")
.subscribe(boost::bind(&rx_dsp_core_200::issue_stream_command, _rx_dsps[dspno], _1));
}
////////////////////////////////////////////////////////////////////
// create tx dsp control objects
////////////////////////////////////////////////////////////////////
_tx_dsp = tx_dsp_core_200::make(
_fpga_ctrl, B100_REG_SR_ADDR(B100_SR_TX_DSP), B100_REG_SR_ADDR(B100_SR_TX_CTRL), B100_TX_ASYNC_SID
);
_tx_dsp->set_link_rate(B100_LINK_RATE_BPS);
_tree->access(mb_path / "tick_rate")
.subscribe(boost::bind(&tx_dsp_core_200::set_tick_rate, _tx_dsp, _1));
_tree->create(mb_path / "tx_dsps/0/rate/range")
.publish(boost::bind(&tx_dsp_core_200::get_host_rates, _tx_dsp));
_tree->create(mb_path / "tx_dsps/0/rate/value")
.set(1e6) //some default
.coerce(boost::bind(&tx_dsp_core_200::set_host_rate, _tx_dsp, _1))
.subscribe(boost::bind(&b100_impl::update_tx_samp_rate, this, 0, _1));
_tree->create(mb_path / "tx_dsps/0/freq/value")
.coerce(boost::bind(&tx_dsp_core_200::set_freq, _tx_dsp, _1));
_tree->create(mb_path / "tx_dsps/0/freq/range")
.publish(boost::bind(&tx_dsp_core_200::get_freq_range, _tx_dsp));
////////////////////////////////////////////////////////////////////
// create time control objects
////////////////////////////////////////////////////////////////////
time64_core_200::readback_bases_type time64_rb_bases;
time64_rb_bases.rb_hi_now = B100_REG_RB_TIME_NOW_HI;
time64_rb_bases.rb_lo_now = B100_REG_RB_TIME_NOW_LO;
time64_rb_bases.rb_hi_pps = B100_REG_RB_TIME_PPS_HI;
time64_rb_bases.rb_lo_pps = B100_REG_RB_TIME_PPS_LO;
_time64 = time64_core_200::make(
_fpga_ctrl, B100_REG_SR_ADDR(B100_SR_TIME64), time64_rb_bases
);
_tree->access(mb_path / "tick_rate")
.subscribe(boost::bind(&time64_core_200::set_tick_rate, _time64, _1));
_tree->create(mb_path / "time/now")
.publish(boost::bind(&time64_core_200::get_time_now, _time64))
.subscribe(boost::bind(&time64_core_200::set_time_now, _time64, _1));
_tree->create(mb_path / "time/pps")
.publish(boost::bind(&time64_core_200::get_time_last_pps, _time64))
.subscribe(boost::bind(&time64_core_200::set_time_next_pps, _time64, _1));
//setup time source props
_tree->create(mb_path / "time_source/value")
.subscribe(boost::bind(&time64_core_200::set_time_source, _time64, _1));
_tree->create >(mb_path / "time_source/options")
.publish(boost::bind(&time64_core_200::get_time_sources, _time64));
//setup reference source props
_tree->create(mb_path / "clock_source/value")
.subscribe(boost::bind(&b100_impl::update_clock_source, this, _1));
static const std::vector clock_sources = boost::assign::list_of("internal")("external")("auto");
_tree->create >(mb_path / "clock_source/options").set(clock_sources);
////////////////////////////////////////////////////////////////////
// create user-defined control objects
////////////////////////////////////////////////////////////////////
_user = user_settings_core_200::make(_fpga_ctrl, B100_REG_SR_ADDR(B100_SR_USER_REGS));
_tree->create(mb_path / "user/regs")
.subscribe(boost::bind(&user_settings_core_200::set_reg, _user, _1));
////////////////////////////////////////////////////////////////////
// create dboard control objects
////////////////////////////////////////////////////////////////////
//read the dboard eeprom to extract the dboard ids
dboard_eeprom_t rx_db_eeprom, tx_db_eeprom, gdb_eeprom;
rx_db_eeprom.load(*_fpga_i2c_ctrl, I2C_ADDR_RX_A);
tx_db_eeprom.load(*_fpga_i2c_ctrl, I2C_ADDR_TX_A);
gdb_eeprom.load(*_fpga_i2c_ctrl, I2C_ADDR_TX_A ^ 5);
//create the properties and register subscribers
_tree->create(mb_path / "dboards/A/rx_eeprom")
.set(rx_db_eeprom)
.subscribe(boost::bind(&b100_impl::set_db_eeprom, this, "rx", _1));
_tree->create(mb_path / "dboards/A/tx_eeprom")
.set(tx_db_eeprom)
.subscribe(boost::bind(&b100_impl::set_db_eeprom, this, "tx", _1));
_tree->create(mb_path / "dboards/A/gdb_eeprom")
.set(gdb_eeprom)
.subscribe(boost::bind(&b100_impl::set_db_eeprom, this, "gdb", _1));
//create a new dboard interface and manager
_dboard_iface = make_b100_dboard_iface(_fpga_ctrl, _fpga_i2c_ctrl, _fpga_spi_ctrl, _clock_ctrl, _codec_ctrl);
_tree->create(mb_path / "dboards/A/iface").set(_dboard_iface);
_dboard_manager = dboard_manager::make(
rx_db_eeprom.id, tx_db_eeprom.id, gdb_eeprom.id,
_dboard_iface, _tree->subtree(mb_path / "dboards/A")
);
//bind frontend corrections to the dboard freq props
const fs_path db_tx_fe_path = mb_path / "dboards" / "A" / "tx_frontends";
BOOST_FOREACH(const std::string &name, _tree->list(db_tx_fe_path)){
_tree->access(db_tx_fe_path / name / "freq" / "value")
.subscribe(boost::bind(&b100_impl::set_tx_fe_corrections, this, _1));
}
const fs_path db_rx_fe_path = mb_path / "dboards" / "A" / "rx_frontends";
BOOST_FOREACH(const std::string &name, _tree->list(db_rx_fe_path)){
_tree->access(db_rx_fe_path / name / "freq" / "value")
.subscribe(boost::bind(&b100_impl::set_rx_fe_corrections, this, _1));
}
//initialize io handling
this->io_init();
////////////////////////////////////////////////////////////////////
// do some post-init tasks
////////////////////////////////////////////////////////////////////
this->update_rates();
_tree->access(mb_path / "tick_rate") //now subscribe the clock rate setter
.subscribe(boost::bind(&b100_clock_ctrl::set_fpga_clock_rate, _clock_ctrl, _1));
_tree->access(mb_path / "rx_subdev_spec").set(subdev_spec_t("A:" + _tree->list(mb_path / "dboards/A/rx_frontends").at(0)));
_tree->access(mb_path / "tx_subdev_spec").set(subdev_spec_t("A:" + _tree->list(mb_path / "dboards/A/tx_frontends").at(0)));
_tree->access(mb_path / "clock_source/value").set("internal");
_tree->access(mb_path / "time_source/value").set("none");
}
b100_impl::~b100_impl(void){
//set an empty async callback now that we deconstruct
_fpga_ctrl->set_async_cb(b100_ctrl::async_cb_type());
}
void b100_impl::check_fw_compat(void){
unsigned char data[4]; //useless data buffer
const boost::uint16_t fw_compat_num = _fx2_ctrl->usrp_control_read(
VRQ_FW_COMPAT, 0, 0, data, sizeof(data)
);
if (fw_compat_num != B100_FW_COMPAT_NUM){
throw uhd::runtime_error(str(boost::format(
"Expected firmware compatibility number 0x%x, but got 0x%x:\n"
"The firmware build is not compatible with the host code build."
) % B100_FW_COMPAT_NUM % fw_compat_num));
}
}
void b100_impl::check_fpga_compat(void){
const boost::uint32_t fpga_compat_num = _fpga_ctrl->peek32(B100_REG_RB_COMPAT);
boost::uint16_t fpga_major = fpga_compat_num >> 16, fpga_minor = fpga_compat_num & 0xffff;
if (fpga_major == 0){ //old version scheme
fpga_major = fpga_minor;
fpga_minor = 0;
}
if (fpga_major != B100_FPGA_COMPAT_NUM){
throw uhd::runtime_error(str(boost::format(
"Expected FPGA compatibility number %d, but got %d:\n"
"The FPGA build is not compatible with the host code build."
) % int(B100_FPGA_COMPAT_NUM) % fpga_major));
}
_tree->create("/mboards/0/fpga_version").set(str(boost::format("%u.%u") % fpga_major % fpga_minor));
}
double b100_impl::update_rx_codec_gain(const double gain){
//set gain on both I and Q, readback on one
//TODO in the future, gains should have individual control
_codec_ctrl->set_rx_pga_gain(gain, 'A');
_codec_ctrl->set_rx_pga_gain(gain, 'B');
return _codec_ctrl->get_rx_pga_gain('A');
}
void b100_impl::set_mb_eeprom(const uhd::usrp::mboard_eeprom_t &mb_eeprom){
mb_eeprom.commit(*_fx2_ctrl, mboard_eeprom_t::MAP_B100);
}
void b100_impl::set_db_eeprom(const std::string &type, const uhd::usrp::dboard_eeprom_t &db_eeprom){
if (type == "rx") db_eeprom.store(*_fpga_i2c_ctrl, I2C_ADDR_RX_A);
if (type == "tx") db_eeprom.store(*_fpga_i2c_ctrl, I2C_ADDR_TX_A);
if (type == "gdb") db_eeprom.store(*_fpga_i2c_ctrl, I2C_ADDR_TX_A ^ 5);
}
void b100_impl::update_clock_source(const std::string &source){
if (source == "auto") _clock_ctrl->use_auto_ref();
else if (source == "internal") _clock_ctrl->use_internal_ref();
else if (source == "external") _clock_ctrl->use_external_ref();
else throw uhd::runtime_error("unhandled clock configuration reference source: " + source);
}
////////////////// some GPIF preparation related stuff /////////////////
void b100_impl::enable_gpif(const bool en) {
_fx2_ctrl->usrp_control_write(VRQ_ENABLE_GPIF, en ? 1 : 0, 0, 0, 0);
}
void b100_impl::clear_fpga_fifo(void) {
_fx2_ctrl->usrp_control_write(VRQ_CLEAR_FPGA_FIFO, 0, 0, 0, 0);
}
sensor_value_t b100_impl::get_ref_locked(void){
const bool lock = _clock_ctrl->get_locked();
return sensor_value_t("Ref", lock, "locked", "unlocked");
}
void b100_impl::set_rx_fe_corrections(const double lo_freq){
apply_rx_fe_corrections(this->get_tree()->subtree("/mboards/0"), "A", lo_freq);
}
void b100_impl::set_tx_fe_corrections(const double lo_freq){
apply_tx_fe_corrections(this->get_tree()->subtree("/mboards/0"), "A", lo_freq);
}