//
// Copyright 2010 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "b100_iface.hpp"
#include "usrp_commands.h"
#include
#include
#include
#include
#include
#include
#include
//FOR TESTING ONLY
#include "b100_regs.hpp"
#include
#include "usrp_i2c_addr.h"
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::transport;
/***********************************************************************
* Constants
**********************************************************************/
static const bool iface_debug = true;
static const boost::uint16_t USRP_B_FW_COMPAT_NUM = 0x02;
static const boost::uint16_t USRP_B_FPGA_COMPAT_NUM = 0x04;
/***********************************************************************
* I2C + FX2 implementation wrapper
**********************************************************************/
class b100_i2c_fx2_iface : public i2c_iface{
public:
b100_i2c_fx2_iface(uhd::usrp::fx2_ctrl::sptr fx2_ctrl){
_fx2_ctrl = fx2_ctrl;
}
void write_i2c(boost::uint8_t addr, const byte_vector_t &bytes)
{
UHD_ASSERT_THROW(bytes.size() < max_i2c_data_bytes);
unsigned char buff[max_i2c_data_bytes];
std::copy(bytes.begin(), bytes.end(), buff);
int ret = _fx2_ctrl->usrp_i2c_write(addr & 0xff,
buff,
bytes.size());
if (iface_debug && (ret < 0))
uhd::runtime_error("USRP: failed i2c write");
}
byte_vector_t read_i2c(boost::uint8_t addr, size_t num_bytes)
{
UHD_ASSERT_THROW(num_bytes < max_i2c_data_bytes);
unsigned char buff[max_i2c_data_bytes];
int ret = _fx2_ctrl->usrp_i2c_read(addr & 0xff,
buff,
num_bytes);
if (iface_debug && ((ret < 0) || (unsigned)ret < (num_bytes)))
uhd::runtime_error("USRP: failed i2c read");
byte_vector_t out_bytes;
for (size_t i = 0; i < num_bytes; i++)
out_bytes.push_back(buff[i]);
return out_bytes;
}
private:
static const size_t max_i2c_data_bytes = 64;
uhd::usrp::fx2_ctrl::sptr _fx2_ctrl;
};
/***********************************************************************
* USRP-E100 interface implementation
**********************************************************************/
class b100_iface_impl : public b100_iface{
public:
/*******************************************************************
* Structors
******************************************************************/
b100_iface_impl(uhd::usrp::fx2_ctrl::sptr fx2_ctrl,
b100_ctrl::sptr fpga_ctrl) :
_fx2_i2c_iface(fx2_ctrl),
_fx2_ctrl(fx2_ctrl),
_fpga_ctrl(fpga_ctrl)
{
this->check_fw_compat();
if (fpga_ctrl.get() != NULL){
enable_gpif(1);
i2c_init();
this->check_fpga_compat();
}
mb_eeprom = mboard_eeprom_t(get_fx2_i2c_iface(), mboard_eeprom_t::MAP_B000);
}
void check_fw_compat(void){
unsigned char data[4]; //useless data buffer
const boost::uint16_t fw_compat_num = _fx2_ctrl->usrp_control_read(
VRQ_FW_COMPAT, 0, 0, data, sizeof(data)
);
if (fw_compat_num != USRP_B_FW_COMPAT_NUM){
throw uhd::runtime_error(str(boost::format(
"Expected firmware compatibility number 0x%x, but got 0x%x:\n"
"The firmware build is not compatible with the host code build."
) % USRP_B_FW_COMPAT_NUM % fw_compat_num));
}
}
void check_fpga_compat(void){
const boost::uint16_t fpga_compat_num = this->peek16(B100_REG_MISC_COMPAT);
if (fpga_compat_num != USRP_B_FPGA_COMPAT_NUM){
throw uhd::runtime_error(str(boost::format(
"Expected FPGA compatibility number 0x%x, but got 0x%x:\n"
"The FPGA build is not compatible with the host code build."
) % USRP_B_FPGA_COMPAT_NUM % fpga_compat_num));
}
}
~b100_iface_impl(void)
{
/* NOP */
}
/*******************************************************************
* Peek and Poke
******************************************************************/
void poke(boost::uint32_t addr, const ctrl_data_t &data) {
boost::mutex::scoped_lock lock(_ctrl_mutex);
_fpga_ctrl->write(addr, data);
}
ctrl_data_t peek(boost::uint32_t addr, size_t len) {
boost::mutex::scoped_lock lock(_ctrl_mutex);
return _fpga_ctrl->read(addr, len);
}
void poke16(boost::uint32_t addr, boost::uint16_t value)
{
ctrl_data_t words(1);
words[0] = value;
poke(addr, words);
}
void poke32(boost::uint32_t addr, boost::uint32_t value)
{
//just a subset of poke() to maintain compatibility
ctrl_data_t words(2);
words[0] = value & 0x0000FFFF;
words[1] = value >> 16;
poke(addr, words);
}
boost::uint32_t peek32(boost::uint32_t addr)
{
ctrl_data_t words = peek(addr, 2);
return boost::uint32_t((boost::uint32_t(words[1]) << 16) | words[0]);
}
boost::uint16_t peek16(boost::uint32_t addr)
{
ctrl_data_t words = peek(addr, 1);
return boost::uint16_t(words[0]);
}
/*******************************************************************
* I2C
******************************************************************/
static const boost::uint32_t i2c_datarate = 400000;
static const boost::uint32_t wishbone_clk = 64000000; //FIXME should go somewhere else
void i2c_init(void) {
//init I2C FPGA interface.
poke16(B100_REG_I2C_CTRL, 0x0000);
//set prescalers to operate at 400kHz: WB_CLK is 64MHz...
boost::uint16_t prescaler = wishbone_clk / (i2c_datarate*5) - 1;
poke16(B100_REG_I2C_PRESCALER_LO, prescaler & 0xFF);
poke16(B100_REG_I2C_PRESCALER_HI, (prescaler >> 8) & 0xFF);
poke16(B100_REG_I2C_CTRL, I2C_CTRL_EN); //enable I2C core
}
static const size_t max_i2c_data_bytes = 64;
void i2c_wait_for_xfer(void)
{
while(this->peek16(B100_REG_I2C_CMD_STATUS) & I2C_ST_TIP)
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
}
bool wait_chk_ack(void) {
i2c_wait_for_xfer();
return (this->peek16(B100_REG_I2C_CMD_STATUS) & I2C_ST_RXACK) == 0;
}
void write_i2c(boost::uint8_t addr, const byte_vector_t &bytes)
{
poke16(B100_REG_I2C_DATA, (addr << 1) | 0); //addr and read bit (0)
poke16(B100_REG_I2C_CMD_STATUS, I2C_CMD_WR | I2C_CMD_START | (bytes.size() == 0 ? I2C_CMD_STOP : 0));
//wait for previous transfer to complete
if(!wait_chk_ack()) {
poke16(B100_REG_I2C_CMD_STATUS, I2C_CMD_STOP);
return;
}
for(size_t i = 0; i < bytes.size(); i++) {
poke16(B100_REG_I2C_DATA, bytes[i]);
poke16(B100_REG_I2C_CMD_STATUS, I2C_CMD_WR | ((i == (bytes.size() - 1)) ? I2C_CMD_STOP : 0));
if(!wait_chk_ack()) {
poke16(B100_REG_I2C_CMD_STATUS, I2C_CMD_STOP);
return;
}
}
}
byte_vector_t read_i2c(boost::uint8_t addr, size_t num_bytes)
{
byte_vector_t bytes;
if(num_bytes == 0) return bytes;
while (peek16(B100_REG_I2C_CMD_STATUS) & I2C_ST_BUSY);
poke16(B100_REG_I2C_DATA, (addr << 1) | 1); //addr and read bit (1)
poke16(B100_REG_I2C_CMD_STATUS, I2C_CMD_WR | I2C_CMD_START);
//wait for previous transfer to complete
if(!wait_chk_ack()) {
poke16(B100_REG_I2C_CMD_STATUS, I2C_CMD_STOP);
}
for(; num_bytes > 0; num_bytes--) {
poke16(B100_REG_I2C_CMD_STATUS, I2C_CMD_RD | ((num_bytes == 1) ? (I2C_CMD_STOP | I2C_CMD_NACK) : 0));
i2c_wait_for_xfer();
boost::uint8_t readback = peek16(B100_REG_I2C_DATA) & 0xFF;
bytes.push_back(readback);
}
return bytes;
}
i2c_iface &get_fx2_i2c_iface(void){
return _fx2_i2c_iface;
}
/*******************************************************************
* SPI interface
* Eventually this will be replaced with a control-channel system
* to let the firmware do the actual write/readback cycles.
* This keeps the bandwidth on the control channel down.
******************************************************************/
void spi_wait(void) {
while(peek32(B100_REG_SPI_CTRL) & SPI_CTRL_GO_BSY);
}
boost::uint32_t transact_spi(int which_slave,
const spi_config_t &config,
boost::uint32_t bits,
size_t num_bits,
bool readback)
{
UHD_ASSERT_THROW((num_bits <= 32) && !(num_bits % 8));
int edge_flags = ((config.miso_edge==spi_config_t::EDGE_FALL) ? SPI_CTRL_RXNEG : 0) |
((config.mosi_edge==spi_config_t::EDGE_FALL) ? 0 : SPI_CTRL_TXNEG)
;
boost::uint16_t ctrl = SPI_CTRL_ASS | (SPI_CTRL_CHAR_LEN_MASK & num_bits) | edge_flags;
poke16(B100_REG_SPI_DIV, 0x0001); // = fpga_clk / 4
poke32(B100_REG_SPI_SS, which_slave & 0xFFFF);
poke32(B100_REG_SPI_TXRX0, bits);
poke16(B100_REG_SPI_CTRL, ctrl);
poke16(B100_REG_SPI_CTRL, ctrl | SPI_CTRL_GO_BSY);
if(readback) {
spi_wait();
return peek32(B100_REG_SPI_TXRX0);
}
else {
return 0;
}
}
void reset_gpif(boost::uint16_t ep) {
_fx2_ctrl->usrp_control_write(VRQ_RESET_GPIF, ep, ep, 0, 0);
}
void enable_gpif(bool en) {
_fx2_ctrl->usrp_control_write(VRQ_ENABLE_GPIF, en ? 1 : 0, 0, 0, 0);
}
void clear_fpga_fifo(void) {
_fx2_ctrl->usrp_control_write(VRQ_CLEAR_FPGA_FIFO, 0, 0, 0, 0);
}
void write_uart(boost::uint8_t, const std::string &) {
throw uhd::not_implemented_error("Unhandled command write_uart()");
}
std::string read_uart(boost::uint8_t) {
throw uhd::not_implemented_error("Unhandled command read_uart()");
}
private:
b100_i2c_fx2_iface _fx2_i2c_iface;
uhd::usrp::fx2_ctrl::sptr _fx2_ctrl;
b100_ctrl::sptr _fpga_ctrl;
boost::mutex _ctrl_mutex;
};
/***********************************************************************
* Public Make Function
**********************************************************************/
b100_iface::sptr b100_iface::make(uhd::usrp::fx2_ctrl::sptr fx2_ctrl,
b100_ctrl::sptr fpga_ctrl)
{
return b100_iface::sptr(new b100_iface_impl(fx2_ctrl, fpga_ctrl));
}