// // Copyright 2011-2013 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #ifndef INCLUDED_LIBUHD_TRANSPORT_SUPER_SEND_PACKET_HANDLER_HPP #define INCLUDED_LIBUHD_TRANSPORT_SUPER_SEND_PACKET_HANDLER_HPP #include "../rfnoc/tx_stream_terminator.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef UHD_TXRX_DEBUG_PRINTS // Included for debugging #include #include #include "boost/date_time/posix_time/posix_time.hpp" #include #include #endif namespace uhd { namespace transport { namespace sph { /*********************************************************************** * Super send packet handler * * A send packet handler represents a group of channels. * The channel group shares a common sample rate. * All channels are sent in unison in send(). **********************************************************************/ class send_packet_handler{ public: typedef boost::function get_buff_type; typedef boost::function async_receiver_type; typedef void(*vrt_packer_type)(uint32_t *, vrt::if_packet_info_t &); //typedef boost::function vrt_packer_type; /*! * Make a new packet handler for send * \param size the number of transport channels */ send_packet_handler(const size_t size = 1): _next_packet_seq(0), _cached_metadata(false) { this->set_enable_trailer(true); this->resize(size); } ~send_packet_handler(void){ /* NOP */ } //! Resize the number of transport channels void resize(const size_t size){ if (this->size() == size) return; _props.resize(size); static const uint64_t zero = 0; _zero_buffs.resize(size, &zero); } //! Get the channel width of this handler size_t size(void) const{ return _props.size(); } //! Setup the vrt packer function and offset void set_vrt_packer(const vrt_packer_type &vrt_packer, const size_t header_offset_words32 = 0){ _vrt_packer = vrt_packer; _header_offset_words32 = header_offset_words32; } //! Set the stream ID for a specific channel (or no SID) void set_xport_chan_sid(const size_t xport_chan, const bool has_sid, const uint32_t sid = 0){ _props.at(xport_chan).has_sid = has_sid; _props.at(xport_chan).sid = sid; } ///////// RFNOC /////////////////// //! Get the stream ID for a specific channel (or zero if no SID) uint32_t get_xport_chan_sid(const size_t xport_chan) const { if (_props.at(xport_chan).has_sid) { return _props.at(xport_chan).sid; } else { return 0; } } void set_terminator(uhd::rfnoc::tx_stream_terminator::sptr terminator) { _terminator = terminator; } uhd::rfnoc::tx_stream_terminator::sptr get_terminator() { return _terminator; } ///////// RFNOC /////////////////// void set_enable_trailer(const bool enable) { _has_tlr = enable; } //! Set the rate of ticks per second void set_tick_rate(const double rate){ _tick_rate = rate; } //! Set the rate of samples per second void set_samp_rate(const double rate){ _samp_rate = rate; } /*! * Set the function to get a managed buffer. * \param xport_chan which transport channel * \param get_buff the getter function */ void set_xport_chan_get_buff(const size_t xport_chan, const get_buff_type &get_buff){ _props.at(xport_chan).get_buff = get_buff; } //! Set the conversion routine for all channels void set_converter(const uhd::convert::id_type &id){ _num_inputs = id.num_inputs; _converter = uhd::convert::get_converter(id)(); this->set_scale_factor(32767.); //update after setting converter _bytes_per_otw_item = uhd::convert::get_bytes_per_item(id.output_format); _bytes_per_cpu_item = uhd::convert::get_bytes_per_item(id.input_format); } /*! * Set the maximum number of samples per host packet. * Ex: A USRP1 in dual channel mode would be half. * \param num_samps the maximum samples in a packet */ void set_max_samples_per_packet(const size_t num_samps){ _max_samples_per_packet = num_samps; } //! Set the scale factor used in float conversion void set_scale_factor(const double scale_factor){ _converter->set_scalar(scale_factor); } //! Set the callback to get async messages void set_async_receiver(const async_receiver_type &async_receiver) { _async_receiver = async_receiver; } //! Overload call to get async metadata bool recv_async_msg( uhd::async_metadata_t &async_metadata, double timeout = 0.1 ){ if (_async_receiver) return _async_receiver(async_metadata, timeout); boost::this_thread::sleep(boost::posix_time::microseconds(long(timeout*1e6))); return false; } /******************************************************************* * Send: * The entry point for the fast-path send calls. * Dispatch into combinations of single packet send calls. ******************************************************************/ UHD_INLINE size_t send( const uhd::tx_streamer::buffs_type &buffs, const size_t nsamps_per_buff, const uhd::tx_metadata_t &metadata, const double timeout ){ //translate the metadata to vrt if packet info vrt::if_packet_info_t if_packet_info; if_packet_info.packet_type = vrt::if_packet_info_t::PACKET_TYPE_DATA; //if_packet_info.has_sid = false; //set per channel if_packet_info.has_cid = false; if_packet_info.has_tlr = _has_tlr; if_packet_info.has_tsi = false; if_packet_info.has_tsf = metadata.has_time_spec; if_packet_info.tsf = metadata.time_spec.to_ticks(_tick_rate); if_packet_info.sob = metadata.start_of_burst; if_packet_info.eob = metadata.end_of_burst; /* * Metadata is cached when we get a send requesting a start of burst with no samples. * It is applied here on the next call to send() that actually has samples to send. */ if (_cached_metadata && nsamps_per_buff != 0) { // If the new metada has a time_spec, do not use the cached time_spec. if (!metadata.has_time_spec) { if_packet_info.has_tsf = _metadata_cache.has_time_spec; if_packet_info.tsf = _metadata_cache.time_spec.to_ticks(_tick_rate); } if_packet_info.sob = _metadata_cache.start_of_burst; if_packet_info.eob = _metadata_cache.end_of_burst; _cached_metadata = false; } if (nsamps_per_buff <= _max_samples_per_packet){ //TODO remove this code when sample counts of zero are supported by hardware #ifndef SSPH_DONT_PAD_TO_ONE static const uint64_t zero = 0; _zero_buffs.resize(buffs.size(), &zero); if (nsamps_per_buff == 0) { // if this is a start of a burst and there are no samples if (metadata.start_of_burst) { // cache metadata and apply on the next send() _metadata_cache = metadata; _cached_metadata = true; return 0; } else { // send requests with no samples are handled here (such as end of burst) return send_one_packet(_zero_buffs, 1, if_packet_info, timeout) & 0x0; } } #endif size_t nsamps_sent = send_one_packet(buffs, nsamps_per_buff, if_packet_info, timeout); #ifdef UHD_TXRX_DEBUG_PRINTS dbg_print_send(nsamps_per_buff, nsamps_sent, metadata, timeout); #endif return nsamps_sent; } size_t total_num_samps_sent = 0; //false until final fragment if_packet_info.eob = false; const size_t num_fragments = (nsamps_per_buff-1)/_max_samples_per_packet; const size_t final_length = ((nsamps_per_buff-1)%_max_samples_per_packet)+1; //loop through the following fragment indexes for (size_t i = 0; i < num_fragments; i++){ //send a fragment with the helper function const size_t num_samps_sent = send_one_packet( buffs, _max_samples_per_packet, if_packet_info, timeout, total_num_samps_sent*_bytes_per_cpu_item ); total_num_samps_sent += num_samps_sent; if (num_samps_sent == 0) return total_num_samps_sent; //setup metadata for the next fragment const time_spec_t time_spec = metadata.time_spec + time_spec_t::from_ticks(total_num_samps_sent, _samp_rate); if_packet_info.tsf = time_spec.to_ticks(_tick_rate); if_packet_info.sob = false; } //send the final fragment with the helper function if_packet_info.eob = metadata.end_of_burst; size_t nsamps_sent = total_num_samps_sent + send_one_packet(buffs, final_length, if_packet_info, timeout, total_num_samps_sent * _bytes_per_cpu_item); #ifdef UHD_TXRX_DEBUG_PRINTS dbg_print_send(nsamps_per_buff, nsamps_sent, metadata, timeout); #endif return nsamps_sent; } private: vrt_packer_type _vrt_packer; size_t _header_offset_words32; double _tick_rate, _samp_rate; struct xport_chan_props_type{ xport_chan_props_type(void):has_sid(false),sid(0){} get_buff_type get_buff; bool has_sid; uint32_t sid; managed_send_buffer::sptr buff; }; std::vector _props; size_t _num_inputs; size_t _bytes_per_otw_item; //used in conversion size_t _bytes_per_cpu_item; //used in conversion uhd::convert::converter::sptr _converter; //used in conversion size_t _max_samples_per_packet; std::vector _zero_buffs; size_t _next_packet_seq; bool _has_tlr; async_receiver_type _async_receiver; bool _cached_metadata; uhd::tx_metadata_t _metadata_cache; uhd::rfnoc::tx_stream_terminator::sptr _terminator; #ifdef UHD_TXRX_DEBUG_PRINTS struct dbg_send_stat_t { dbg_send_stat_t(long wc, size_t nspb, size_t nss, uhd::tx_metadata_t md, double to, double rate): wallclock(wc), nsamps_per_buff(nspb), nsamps_sent(nss), metadata(md), timeout(to), samp_rate(rate) {} long wallclock; size_t nsamps_per_buff; size_t nsamps_sent; uhd::tx_metadata_t metadata; double timeout; double samp_rate; // Create a formatted print line for all the info gathered in this struct. std::string print_line() { boost::format fmt("send,%ld,%f,%i,%i,%s,%s,%s,%ld"); fmt % wallclock; fmt % timeout % (int)nsamps_per_buff % (int) nsamps_sent; fmt % (metadata.start_of_burst ? "true":"false") % (metadata.end_of_burst ? "true":"false"); fmt % (metadata.has_time_spec ? "true":"false") % metadata.time_spec.to_ticks(samp_rate); return fmt.str(); } }; void dbg_print_send(size_t nsamps_per_buff, size_t nsamps_sent, const uhd::tx_metadata_t &metadata, const double timeout, bool dbg_print_directly = true) { dbg_send_stat_t data(boost::get_system_time().time_of_day().total_microseconds(), nsamps_per_buff, nsamps_sent, metadata, timeout, _samp_rate ); if(dbg_print_directly){ dbg_print_err(data.print_line()); } } void dbg_print_err(std::string msg) { msg = "super_send_packet_handler," + msg; fprintf(stderr, "%s\n", msg.c_str()); } #endif /******************************************************************* * Send a single packet: ******************************************************************/ UHD_INLINE size_t send_one_packet( const uhd::tx_streamer::buffs_type &buffs, const size_t nsamps_per_buff, vrt::if_packet_info_t &if_packet_info, const double timeout, const size_t buffer_offset_bytes = 0 ){ //load the rest of the if_packet_info in here if_packet_info.num_payload_bytes = nsamps_per_buff*_num_inputs*_bytes_per_otw_item; if_packet_info.num_payload_words32 = (if_packet_info.num_payload_bytes + 3/*round up*/)/sizeof(uint32_t); if_packet_info.packet_count = _next_packet_seq; //get a buffer for each channel or timeout BOOST_FOREACH(xport_chan_props_type &props, _props){ if (not props.buff) props.buff = props.get_buff(timeout); if (not props.buff) return 0; //timeout } //setup the data to share with converter threads _convert_nsamps = nsamps_per_buff; _convert_buffs = &buffs; _convert_buffer_offset_bytes = buffer_offset_bytes; _convert_if_packet_info = &if_packet_info; //perform N channels of conversion for (size_t i = 0; i < this->size(); i++) { convert_to_in_buff(i); } _next_packet_seq++; //increment sequence after commits return nsamps_per_buff; } /*! Run the conversion from the internal buffers to the user's input * buffer. * * - Calls the converter * - Releases internal data buffers * - Updates read/write pointers */ UHD_INLINE void convert_to_in_buff(const size_t index) { //shortcut references to local data structures managed_send_buffer::sptr &buff = _props[index].buff; vrt::if_packet_info_t if_packet_info = *_convert_if_packet_info; const tx_streamer::buffs_type &buffs = *_convert_buffs; //fill IO buffs with pointers into the output buffer const void *io_buffs[4/*max interleave*/]; for (size_t i = 0; i < _num_inputs; i++){ const char *b = reinterpret_cast(buffs[index*_num_inputs + i]); io_buffs[i] = b + _convert_buffer_offset_bytes; } const ref_vector in_buffs(io_buffs, _num_inputs); //pack metadata into a vrt header uint32_t *otw_mem = buff->cast() + _header_offset_words32; if_packet_info.has_sid = _props[index].has_sid; if_packet_info.sid = _props[index].sid; _vrt_packer(otw_mem, if_packet_info); otw_mem += if_packet_info.num_header_words32; //perform the conversion operation _converter->conv(in_buffs, otw_mem, _convert_nsamps); //commit the samples to the zero-copy interface const size_t num_vita_words32 = _header_offset_words32+if_packet_info.num_packet_words32; buff->commit(num_vita_words32*sizeof(uint32_t)); buff.reset(); //effectively a release } //! Shared variables for the worker threads size_t _convert_nsamps; const tx_streamer::buffs_type *_convert_buffs; size_t _convert_buffer_offset_bytes; vrt::if_packet_info_t *_convert_if_packet_info; }; class send_packet_streamer : public send_packet_handler, public tx_streamer{ public: send_packet_streamer(const size_t max_num_samps){ _max_num_samps = max_num_samps; this->set_max_samples_per_packet(_max_num_samps); } size_t get_num_channels(void) const{ return this->size(); } size_t get_max_num_samps(void) const{ return _max_num_samps; } size_t send( const tx_streamer::buffs_type &buffs, const size_t nsamps_per_buff, const uhd::tx_metadata_t &metadata, const double timeout ){ return send_packet_handler::send(buffs, nsamps_per_buff, metadata, timeout); } bool recv_async_msg( uhd::async_metadata_t &async_metadata, double timeout = 0.1 ){ return send_packet_handler::recv_async_msg(async_metadata, timeout); } private: size_t _max_num_samps; }; } // namespace sph } // namespace transport } // namespace uhd #endif /* INCLUDED_LIBUHD_TRANSPORT_SUPER_SEND_PACKET_HANDLER_HPP */