//
// Copyright 2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#ifndef INCLUDED_LIBUHD_TRANSPORT_SUPER_RECV_PACKET_HANDLER_HPP
#define INCLUDED_LIBUHD_TRANSPORT_SUPER_RECV_PACKET_HANDLER_HPP
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace uhd{ namespace transport{ namespace sph{
UHD_INLINE boost::uint32_t get_context_code(
const boost::uint32_t *vrt_hdr, const vrt::if_packet_info_t &if_packet_info
){
//extract the context word (we dont know the endianness so mirror the bytes)
boost::uint32_t word0 = vrt_hdr[if_packet_info.num_header_words32] |
uhd::byteswap(vrt_hdr[if_packet_info.num_header_words32]);
return word0 & 0xff;
}
typedef boost::function handle_overflow_type;
static inline void handle_overflow_nop(void){}
/***********************************************************************
* Alignment indexes class:
* - Access an integer set with very quick operations.
**********************************************************************/
class alignment_indexes{
public:
typedef boost::uint16_t index_type; //16 buffers
alignment_indexes(void):
_indexes(0),
_sizes(256, 0),
_fronts(256, ~0)
{
//fill the O(1) look up tables for a single byte
for (size_t i = 0; i < 256; i++){
for (size_t j = 0; j < 8; j++){
if (i & (1 << j)){
_sizes[i]++;
_fronts[i] = j;
}
}
}
}
UHD_INLINE void reset(size_t len){_indexes = (1 << len) - 1;}
UHD_INLINE size_t front(void){
//check one byte per iteration
for (size_t i = 0; i < sizeof(_indexes)*8; i+=8){
size_t front = _fronts[(_indexes >> i) & 0xff];
if (front != size_t(~0)) return front + i;
}
if (empty()) throw uhd::runtime_error("cannot call front() when empty");
UHD_THROW_INVALID_CODE_PATH();
}
UHD_INLINE void remove(size_t index){_indexes &= ~(1 << index);}
UHD_INLINE bool empty(void){return _indexes == 0;}
UHD_INLINE size_t size(void){
size_t size = 0;
//check one byte per iteration
for (size_t i = 0; i < sizeof(_indexes)*8; i+=8){
size += _sizes[(_indexes >> i) & 0xff];
}
return size;
}
private:
index_type _indexes;
std::vector _sizes;
std::vector _fronts;
};
/***********************************************************************
* Super receive packet handler
*
* A receive packet handler represents a group of channels.
* The channel group shares a common sample rate.
* All channels are received in unison in recv().
**********************************************************************/
class recv_packet_handler{
public:
typedef boost::function get_buff_type;
typedef void(*vrt_unpacker_type)(const boost::uint32_t *, vrt::if_packet_info_t &);
//typedef boost::function vrt_unpacker_type;
/*!
* Make a new packet handler for receive
* \param size the number of transport channels
*/
recv_packet_handler(const size_t size = 1):
_queue_error_for_next_call(false),
_buffers_infos_index(0)
{
UHD_ASSERT_THROW(size <= sizeof(alignment_indexes::index_type)*8);
this->resize(size);
set_alignment_failure_threshold(1000);
}
//! Resize the number of transport channels
void resize(const size_t size){
if (this->size() == size) return;
_props.resize(size);
_buffers_infos.resize(4, buffers_info_type(size));
}
//! Get the channel width of this handler
size_t size(void) const{
return _props.size();
}
//! Setup the vrt unpacker function and offset
void set_vrt_unpacker(const vrt_unpacker_type &vrt_unpacker, const size_t header_offset_words32 = 0){
_vrt_unpacker = vrt_unpacker;
_header_offset_words32 = header_offset_words32;
}
/*!
* Set the threshold for alignment failure.
* How many packets throw out before giving up?
* \param threshold number of packets per channel
*/
void set_alignment_failure_threshold(const size_t threshold){
_alignment_faulure_threshold = threshold*this->size();
}
//! Set the rate of ticks per second
void set_tick_rate(const double rate){
_tick_rate = rate;
}
//! Set the rate of samples per second
void set_samp_rate(const double rate){
_samp_rate = rate;
}
/*!
* Set the function to get a managed buffer.
* \param xport_chan which transport channel
* \param get_buff the getter function
*/
void set_xport_chan_get_buff(const size_t xport_chan, const get_buff_type &get_buff){
_props.at(xport_chan).get_buff = get_buff;
}
/*!
* Setup the conversion functions (homogeneous across transports).
* Here, we load a table of converters for all possible io types.
* This makes the converter look-up an O(1) operation.
* \param otw_type the channel data type
* \param width the streams per channel (usually 1)
*/
void set_converter(const uhd::otw_type_t &otw_type, const size_t width = 1){
_io_buffs.resize(width);
_converters.resize(128);
for (size_t io_type = 0; io_type < _converters.size(); io_type++){
try{
_converters[io_type] = uhd::convert::get_converter_otw_to_cpu(
io_type_t::tid_t(io_type), otw_type, 1, width
);
}catch(const uhd::value_error &e){} //we expect this, not all io_types valid...
}
_bytes_per_item = otw_type.get_sample_size();
}
//! Set the transport channel's overflow handler
void set_overflow_handler(const size_t xport_chan, const handle_overflow_type &handle_overflow){
_props.at(xport_chan).handle_overflow = handle_overflow;
}
//! Get a scoped lock object for this instance
boost::mutex::scoped_lock get_scoped_lock(void){
return boost::mutex::scoped_lock(_mutex);
}
/*******************************************************************
* Receive:
* The entry point for the fast-path receive calls.
* Dispatch into combinations of single packet receive calls.
******************************************************************/
UHD_INLINE size_t recv(
const uhd::device::recv_buffs_type &buffs,
const size_t nsamps_per_buff,
uhd::rx_metadata_t &metadata,
const uhd::io_type_t &io_type,
uhd::device::recv_mode_t recv_mode,
double timeout
){
boost::mutex::scoped_lock lock(_mutex);
//handle metadata queued from a previous receive
if (_queue_error_for_next_call){
_queue_error_for_next_call = false;
metadata = _queue_metadata;
//We want to allow a full buffer recv to be cut short by a timeout,
//but do not want to generate an inline timeout message packet.
if (_queue_metadata.error_code != rx_metadata_t::ERROR_CODE_TIMEOUT) return 0;
}
switch(recv_mode){
////////////////////////////////////////////////////////////////
case uhd::device::RECV_MODE_ONE_PACKET:{
////////////////////////////////////////////////////////////////
return recv_one_packet(buffs, nsamps_per_buff, metadata, io_type, timeout);
}
////////////////////////////////////////////////////////////////
case uhd::device::RECV_MODE_FULL_BUFF:{
////////////////////////////////////////////////////////////////
size_t accum_num_samps = recv_one_packet(
buffs, nsamps_per_buff, metadata, io_type, timeout
);
//first recv had an error code set, return immediately
if (metadata.error_code != rx_metadata_t::ERROR_CODE_NONE) return accum_num_samps;
//loop until buffer is filled or error code
while(accum_num_samps < nsamps_per_buff){
size_t num_samps = recv_one_packet(
buffs, nsamps_per_buff - accum_num_samps, _queue_metadata,
io_type, timeout, accum_num_samps*io_type.size
);
//metadata had an error code set, store for next call and return
if (_queue_metadata.error_code != rx_metadata_t::ERROR_CODE_NONE){
_queue_error_for_next_call = true;
break;
}
accum_num_samps += num_samps;
}
return accum_num_samps;
}
default: throw uhd::value_error("unknown recv mode");
}//switch(recv_mode)
}
private:
boost::mutex _mutex;
vrt_unpacker_type _vrt_unpacker;
size_t _header_offset_words32;
double _tick_rate, _samp_rate;
bool _queue_error_for_next_call;
size_t _alignment_faulure_threshold;
rx_metadata_t _queue_metadata;
struct xport_chan_props_type{
xport_chan_props_type(void):
packet_count(0),
handle_overflow(&handle_overflow_nop)
{}
get_buff_type get_buff;
size_t packet_count;
handle_overflow_type handle_overflow;
};
std::vector _props;
std::vector _io_buffs; //used in conversion
size_t _bytes_per_item; //used in conversion
std::vector _converters; //used in conversion
//! information stored for a received buffer
struct per_buffer_info_type{
managed_recv_buffer::sptr buff;
const boost::uint32_t *vrt_hdr;
vrt::if_packet_info_t ifpi;
time_spec_t time;
const char *copy_buff;
};
//!information stored for a set of aligned buffers
struct buffers_info_type : std::vector {
buffers_info_type(const size_t size):
std::vector(size),
alignment_time_valid(false),
data_bytes_to_copy(0),
fragment_offset_in_samps(0)
{
indexes_to_do.reset(size);
}
alignment_indexes indexes_to_do; //used in alignment logic
time_spec_t alignment_time; //used in alignment logic
bool alignment_time_valid; //used in alignment logic
size_t data_bytes_to_copy; //keeps track of state
size_t fragment_offset_in_samps; //keeps track of state
rx_metadata_t metadata; //packet description
};
//! a circular queue of buffer infos
std::vector _buffers_infos;
size_t _buffers_infos_index;
buffers_info_type &get_curr_buffer_info(void){return _buffers_infos[_buffers_infos_index];}
buffers_info_type &get_prev_buffer_info(void){return _buffers_infos[(_buffers_infos_index + 3)%4];}
buffers_info_type &get_next_buffer_info(void){return _buffers_infos[(_buffers_infos_index + 1)%4];}
void increment_buffer_info(void){_buffers_infos_index = (_buffers_infos_index + 1)%4;}
//! possible return options for the packet receiver
enum packet_type{
PACKET_IF_DATA,
PACKET_TIMESTAMP_ERROR,
PACKET_INLINE_MESSAGE,
PACKET_TIMEOUT_ERROR,
PACKET_SEQUENCE_ERROR
};
/*******************************************************************
* Get and process a single packet from the transport:
* Receive a single packet at the given index.
* Extract all the relevant info and store.
* Check the info to determine the return code.
******************************************************************/
UHD_INLINE packet_type get_and_process_single_packet(
const size_t index,
buffers_info_type &prev_buffer_info,
buffers_info_type &curr_buffer_info,
double timeout
){
//get a single packet from the transport layer
managed_recv_buffer::sptr &buff = curr_buffer_info[index].buff;
buff = _props[index].get_buff(timeout);
if (buff.get() == NULL) return PACKET_TIMEOUT_ERROR;
//bounds check before extract
size_t num_packet_words32 = buff->size()/sizeof(boost::uint32_t);
if (num_packet_words32 <= _header_offset_words32){
throw std::runtime_error("recv buffer smaller than vrt packet offset");
}
//extract packet info
per_buffer_info_type &info = curr_buffer_info[index];
info.ifpi.num_packet_words32 = num_packet_words32 - _header_offset_words32;
info.vrt_hdr = buff->cast() + _header_offset_words32;
_vrt_unpacker(info.vrt_hdr, info.ifpi);
info.time = time_spec_t(time_t(info.ifpi.tsi), size_t(info.ifpi.tsf), _tick_rate); //assumes has_tsi and has_tsf are true
info.copy_buff = reinterpret_cast(info.vrt_hdr + info.ifpi.num_header_words32);
//store the packet count for the next iteration
#ifndef SRPH_DONT_CHECK_SEQUENCE
const size_t expected_packet_count = _props[index].packet_count;
_props[index].packet_count = (info.ifpi.packet_count + 1)%16;
#endif
//--------------------------------------------------------------
//-- Determine return conditions:
//-- The order of these checks is HOLY.
//--------------------------------------------------------------
//1) check for out of order timestamps
if (info.ifpi.has_tsi and info.ifpi.has_tsf and prev_buffer_info[index].time > info.time){
return PACKET_TIMESTAMP_ERROR;
}
//2) check for inline IF message packets
if (info.ifpi.packet_type != vrt::if_packet_info_t::PACKET_TYPE_DATA){
return PACKET_INLINE_MESSAGE;
}
//3) check for sequence errors
#ifndef SRPH_DONT_CHECK_SEQUENCE
if (expected_packet_count != info.ifpi.packet_count){
return PACKET_SEQUENCE_ERROR;
}
#endif
//4) otherwise the packet is normal!
return PACKET_IF_DATA;
}
/*******************************************************************
* Alignment check:
* Check the received packet for alignment and mark accordingly.
******************************************************************/
UHD_INLINE void alignment_check(
const size_t index, buffers_info_type &info
){
//if alignment time was not valid or if the sequence id is newer:
// use this index's time as the alignment time
// reset the indexes list and remove this index
if (not info.alignment_time_valid or info[index].time > info.alignment_time){
info.alignment_time_valid = true;
info.alignment_time = info[index].time;
info.indexes_to_do.reset(this->size());
info.indexes_to_do.remove(index);
info.data_bytes_to_copy = info[index].ifpi.num_payload_words32*sizeof(boost::uint32_t);
}
//if the sequence id matches:
// remove this index from the list and continue
else if (info[index].time == info.alignment_time){
info.indexes_to_do.remove(index);
}
//if the sequence id is older:
// continue with the same index to try again
//else if (info[index].time < info.alignment_time)...
}
/*******************************************************************
* Get aligned buffers:
* Iterate through each index and try to accumulate aligned buffers.
* Handle all of the edge cases like inline messages and errors.
* The logic will throw out older packets until it finds a match.
******************************************************************/
UHD_INLINE void get_aligned_buffs(double timeout){
increment_buffer_info(); //increment to next buffer
buffers_info_type &prev_info = get_prev_buffer_info();
buffers_info_type &curr_info = get_curr_buffer_info();
buffers_info_type &next_info = get_next_buffer_info();
//Loop until we get a message of an aligned set of buffers:
// - Receive a single packet and extract its info.
// - Handle the packet type yielded by the receive.
// - Check the timestamps for alignment conditions.
size_t iterations = 0;
while (not curr_info.indexes_to_do.empty()){
//get the index to process for this iteration
const size_t index = curr_info.indexes_to_do.front();
packet_type packet;
//receive a single packet from the transport
try{
packet = get_and_process_single_packet(
index, prev_info, curr_info, timeout
);
}
//handle the case when the get packet throws
catch(const std::exception &e){
UHD_MSG(error) << boost::format(
"The receive packet handler caught an exception.\n%s"
) % e.what() << std::endl;
std::swap(curr_info, next_info); //save progress from curr -> next
curr_info.metadata.has_time_spec = false;
curr_info.metadata.time_spec = time_spec_t(0.0);
curr_info.metadata.more_fragments = false;
curr_info.metadata.fragment_offset = 0;
curr_info.metadata.start_of_burst = false;
curr_info.metadata.end_of_burst = false;
curr_info.metadata.error_code = rx_metadata_t::ERROR_CODE_BAD_PACKET;
return;
}
switch(packet){
case PACKET_IF_DATA:
alignment_check(index, curr_info);
break;
case PACKET_TIMESTAMP_ERROR:
//If the user changes the device time while streaming or without flushing,
//we can receive a packet that comes before the previous packet in time.
//This could cause the alignment logic to discard future received packets.
//Therefore, when this occurs, we reset the info to restart from scratch.
if (curr_info.alignment_time_valid and curr_info.alignment_time != curr_info[index].time){
curr_info.alignment_time_valid = false;
}
alignment_check(index, curr_info);
break;
case PACKET_INLINE_MESSAGE:
std::swap(curr_info, next_info); //save progress from curr -> next
curr_info.metadata.has_time_spec = next_info[index].ifpi.has_tsi and next_info[index].ifpi.has_tsf;
curr_info.metadata.time_spec = next_info[index].time;
curr_info.metadata.more_fragments = false;
curr_info.metadata.fragment_offset = 0;
curr_info.metadata.start_of_burst = false;
curr_info.metadata.end_of_burst = false;
curr_info.metadata.error_code = rx_metadata_t::error_code_t(get_context_code(next_info[index].vrt_hdr, next_info[index].ifpi));
if (curr_info.metadata.error_code == rx_metadata_t::ERROR_CODE_OVERFLOW) _props[index].handle_overflow();
UHD_MSG(fastpath) << "O";
return;
case PACKET_TIMEOUT_ERROR:
std::swap(curr_info, next_info); //save progress from curr -> next
curr_info.metadata.has_time_spec = false;
curr_info.metadata.time_spec = time_spec_t(0.0);
curr_info.metadata.more_fragments = false;
curr_info.metadata.fragment_offset = 0;
curr_info.metadata.start_of_burst = false;
curr_info.metadata.end_of_burst = false;
curr_info.metadata.error_code = rx_metadata_t::ERROR_CODE_TIMEOUT;
return;
case PACKET_SEQUENCE_ERROR:
alignment_check(index, curr_info);
std::swap(curr_info, next_info); //save progress from curr -> next
curr_info.metadata.has_time_spec = prev_info.metadata.has_time_spec;
curr_info.metadata.time_spec = prev_info.metadata.time_spec + time_spec_t(
0.0, prev_info[index].ifpi.num_payload_words32*sizeof(boost::uint32_t)/_bytes_per_item, _samp_rate);
curr_info.metadata.more_fragments = false;
curr_info.metadata.fragment_offset = 0;
curr_info.metadata.start_of_burst = false;
curr_info.metadata.end_of_burst = false;
curr_info.metadata.error_code = rx_metadata_t::ERROR_CODE_OVERFLOW;
UHD_MSG(fastpath) << "O";
return;
}
//too many iterations: detect alignment failure
if (iterations++ > _alignment_faulure_threshold){
UHD_MSG(error) << boost::format(
"The receive packet handler failed to time-align packets.\n"
"%u received packets were processed by the handler.\n"
"However, a timestamp match could not be determined.\n"
) % iterations << std::endl;
std::swap(curr_info, next_info); //save progress from curr -> next
curr_info.metadata.has_time_spec = false;
curr_info.metadata.time_spec = time_spec_t(0.0);
curr_info.metadata.more_fragments = false;
curr_info.metadata.fragment_offset = 0;
curr_info.metadata.start_of_burst = false;
curr_info.metadata.end_of_burst = false;
curr_info.metadata.error_code = rx_metadata_t::ERROR_CODE_ALIGNMENT;
return;
}
}
//set the metadata from the buffer information at index zero
curr_info.metadata.has_time_spec = curr_info[0].ifpi.has_tsi and curr_info[0].ifpi.has_tsf;
curr_info.metadata.time_spec = curr_info[0].time;
curr_info.metadata.more_fragments = false;
curr_info.metadata.fragment_offset = 0;
/* TODO SOB on RX not supported in hardware
static const int tlr_sob_flags = (1 << 21) | (1 << 9); //enable and indicator bits
curr_info.metadata.start_of_burst = curr_info[0].ifpi.has_tlr and (int(curr_info[0].ifpi.tlr & tlr_sob_flags) != 0);
*/
curr_info.metadata.start_of_burst = false;
static const int tlr_eob_flags = (1 << 20) | (1 << 8); //enable and indicator bits
curr_info.metadata.end_of_burst = curr_info[0].ifpi.has_tlr and (int(curr_info[0].ifpi.tlr & tlr_eob_flags) != 0);
curr_info.metadata.error_code = rx_metadata_t::ERROR_CODE_NONE;
}
/*******************************************************************
* Receive a single packet:
* Handles fragmentation, messages, errors, and copy-conversion.
* When no fragments are available, call the get aligned buffers.
* Then copy-convert available data into the user's IO buffers.
******************************************************************/
UHD_INLINE size_t recv_one_packet(
const uhd::device::recv_buffs_type &buffs,
const size_t nsamps_per_buff,
uhd::rx_metadata_t &metadata,
const uhd::io_type_t &io_type,
double timeout,
const size_t buffer_offset_bytes = 0
){
//get the next buffer if the current one has expired
if (get_curr_buffer_info().data_bytes_to_copy == 0){
//reset current buffer info members for reuse
get_curr_buffer_info().fragment_offset_in_samps = 0;
get_curr_buffer_info().alignment_time_valid = false;
get_curr_buffer_info().indexes_to_do.reset(this->size());
//perform receive with alignment logic
get_aligned_buffs(timeout);
}
buffers_info_type &info = get_curr_buffer_info();
metadata = info.metadata;
//interpolate the time spec (useful when this is a fragment)
metadata.time_spec += time_spec_t(0, info.fragment_offset_in_samps, _samp_rate);
//extract the number of samples available to copy
const size_t nsamps_available = info.data_bytes_to_copy/_bytes_per_item;
const size_t nsamps_to_copy = std::min(nsamps_per_buff*_io_buffs.size(), nsamps_available);
const size_t bytes_to_copy = nsamps_to_copy*_bytes_per_item;
const size_t nsamps_to_copy_per_io_buff = nsamps_to_copy/_io_buffs.size();
size_t buff_index = 0;
BOOST_FOREACH(per_buffer_info_type &buff_info, info){
//fill a vector with pointers to the io buffers
BOOST_FOREACH(void *&io_buff, _io_buffs){
io_buff = reinterpret_cast(buffs[buff_index++]) + buffer_offset_bytes;
}
//copy-convert the samples from the recv buffer
_converters[io_type.tid](buff_info.copy_buff, _io_buffs, nsamps_to_copy_per_io_buff, 1/32767.);
//update the rx copy buffer to reflect the bytes copied
buff_info.copy_buff += bytes_to_copy;
}
//update the copy buffer's availability
info.data_bytes_to_copy -= bytes_to_copy;
//setup the fragment flags and offset
metadata.more_fragments = info.data_bytes_to_copy != 0;
metadata.fragment_offset = info.fragment_offset_in_samps;
info.fragment_offset_in_samps += nsamps_to_copy; //set for next call
return nsamps_to_copy_per_io_buff;
}
};
}}} //namespace
#endif /* INCLUDED_LIBUHD_TRANSPORT_SUPER_RECV_PACKET_HANDLER_HPP */