// // Copyright 2019 Ettus Research, a National Instruments Brand // // SPDX-License-Identifier: GPL-3.0-or-later // #include #include #include #include using namespace uhd; using namespace uhd::rfnoc; const std::string STREAMER_ID = "TxStreamer"; static std::atomic streamer_inst_ctr; static constexpr size_t ASYNC_MSG_QUEUE_SIZE = 1000; rfnoc_tx_streamer::rfnoc_tx_streamer(const size_t num_chans, const uhd::stream_args_t stream_args, disconnect_fn_t disconnect_cb) : tx_streamer_impl(num_chans, stream_args) , _unique_id(STREAMER_ID + "#" + std::to_string(streamer_inst_ctr++)) , _stream_args(stream_args) , _disconnect_cb(disconnect_cb) { _async_msg_queue = std::make_shared(ASYNC_MSG_QUEUE_SIZE); // No block to which to forward properties or actions set_prop_forwarding_policy(forwarding_policy_t::DROP); set_action_forwarding_policy(forwarding_policy_t::DROP); register_action_handler(ACTION_KEY_TX_EVENT, [this](const res_source_info& src, action_info::sptr action) { tx_event_action_info::sptr tx_event_action = std::dynamic_pointer_cast(action); if (!tx_event_action) { RFNOC_LOG_WARNING("Received invalid TX event action!"); return; } _handle_tx_event_action(src, tx_event_action); }); // Initialize properties _scaling_out.reserve(num_chans); _samp_rate_out.reserve(num_chans); _tick_rate_out.reserve(num_chans); _type_out.reserve(num_chans); _mtu_out.reserve(num_chans); _atomic_item_size_out.reserve(num_chans); for (size_t i = 0; i < num_chans; i++) { _register_props(i, stream_args.otw_format); } for (size_t i = 0; i < num_chans; i++) { prop_ptrs_t mtu_resolver_out; for (auto& mtu_prop : _mtu_out) { mtu_resolver_out.insert(&mtu_prop); } add_property_resolver({&_mtu_out[i]}, std::move(mtu_resolver_out), [&mtu_out = _mtu_out[i], i, this]() { const auto UHD_UNUSED(ii) = i; RFNOC_LOG_TRACE("Calling resolver for `mtu_out'@" << i); if (mtu_out.is_valid()) { const size_t mtu = std::min(mtu_out.get(), tx_streamer_impl::get_mtu()); // Set the same MTU value for all chans for (auto& prop : this->_mtu_out) { prop.set(mtu); } if (mtu < tx_streamer_impl::get_mtu()) { tx_streamer_impl::set_mtu(mtu); } } }); } node_accessor_t node_accessor; node_accessor.init_props(this); } rfnoc_tx_streamer::~rfnoc_tx_streamer() { if (_disconnect_cb) { _disconnect_cb(_unique_id); } } std::string rfnoc_tx_streamer::get_unique_id() const { return _unique_id; } size_t rfnoc_tx_streamer::get_num_input_ports() const { return 0; } size_t rfnoc_tx_streamer::get_num_output_ports() const { return get_num_channels(); } const uhd::stream_args_t& rfnoc_tx_streamer::get_stream_args() const { return _stream_args; } bool rfnoc_tx_streamer::check_topology(const std::vector& connected_inputs, const std::vector& connected_outputs) { // Check that all channels are connected if (connected_outputs.size() != get_num_output_ports()) { return false; } // Call base class to check that connections are valid return node_t::check_topology(connected_inputs, connected_outputs); } void rfnoc_tx_streamer::connect_channel( const size_t channel, chdr_tx_data_xport::uptr xport) { UHD_ASSERT_THROW(channel < _mtu_out.size()); // Stash away the MTU before we lose access to xports const size_t mtu = xport->get_mtu(); xport->set_enqueue_async_msg_fn( [this, channel]( async_metadata_t::event_code_t event_code, bool has_tsf, uint64_t tsf) { async_metadata_t md; md.channel = channel; md.event_code = event_code; md.has_time_spec = has_tsf; if (has_tsf) { md.time_spec = time_spec_t::from_ticks(tsf, get_tick_rate()); } this->_async_msg_queue->enqueue(md); }); tx_streamer_impl::connect_channel(channel, std::move(xport)); // Update MTU property based on xport limits. We need to do this after // connect_channel(), because that's where the chdr_tx_data_xport object // learns its header size. set_property(PROP_KEY_MTU, mtu, {res_source_info::OUTPUT_EDGE, channel}); } bool rfnoc_tx_streamer::recv_async_msg( uhd::async_metadata_t& async_metadata, double timeout) { const auto timeout_ms = static_cast(timeout * 1000); return _async_msg_queue->recv_async_msg(async_metadata, timeout_ms); } void rfnoc_tx_streamer::_register_props(const size_t chan, const std::string& otw_format) { // Create actual properties and store them _scaling_out.push_back( property_t(PROP_KEY_SCALING, {res_source_info::OUTPUT_EDGE, chan})); _samp_rate_out.push_back( property_t(PROP_KEY_SAMP_RATE, {res_source_info::OUTPUT_EDGE, chan})); _tick_rate_out.push_back( property_t(PROP_KEY_TICK_RATE, {res_source_info::OUTPUT_EDGE, chan})); _type_out.emplace_back(property_t( PROP_KEY_TYPE, otw_format, {res_source_info::OUTPUT_EDGE, chan})); _mtu_out.push_back(property_t( PROP_KEY_MTU, get_mtu(), {res_source_info::OUTPUT_EDGE, chan})); _atomic_item_size_out.push_back( property_t(PROP_KEY_ATOMIC_ITEM_SIZE, 1, {res_source_info::OUTPUT_EDGE, chan})); // Give us some shorthands for the rest of this function property_t* scaling_out = &_scaling_out.back(); property_t* samp_rate_out = &_samp_rate_out.back(); property_t* tick_rate_out = &_tick_rate_out.back(); property_t* type_out = &_type_out.back(); property_t* mtu_out = &_mtu_out.back(); property_t* atomic_item_size_out = &_atomic_item_size_out.back(); // Register them register_property(scaling_out); register_property(samp_rate_out); register_property(tick_rate_out); register_property(type_out); register_property(mtu_out); register_property(atomic_item_size_out); // Add resolvers add_property_resolver( {scaling_out}, {}, [& scaling_out = *scaling_out, chan, this]() { RFNOC_LOG_TRACE("Calling resolver for `scaling_out'@" << chan); if (scaling_out.is_valid()) { this->set_scale_factor(chan, 32767.0 / scaling_out.get()); } }); add_property_resolver( {samp_rate_out}, {}, [&samp_rate_out = *samp_rate_out, chan, this]() { const auto UHD_UNUSED(log_chan) = chan; RFNOC_LOG_TRACE("Calling resolver for `samp_rate_out'@" << chan); if (samp_rate_out.is_valid()) { this->set_samp_rate(samp_rate_out.get()); } }); add_property_resolver( {tick_rate_out}, {}, [&tick_rate_out = *tick_rate_out, chan, this]() { const auto UHD_UNUSED(log_chan) = chan; RFNOC_LOG_TRACE("Calling resolver for `tick_rate_out'@" << chan); if (tick_rate_out.is_valid()) { this->set_tick_rate(tick_rate_out.get()); } }); add_property_resolver( {atomic_item_size_out, mtu_out}, {}, [&ais = *atomic_item_size_out, chan, this]() { const auto UHD_UNUSED(log_chan) = chan; RFNOC_LOG_TRACE("Calling resolver for `atomic_item_size'@" << chan); if (ais.is_valid()) { const auto spp = this->tx_streamer_impl::get_max_num_samps(); if (spp < ais.get()) { throw uhd::value_error("samples per package must not be smaller than atomic item size"); } const auto misalignment = spp % ais.get(); RFNOC_LOG_TRACE("Check atomic item size " << ais.get() << " divides spp " << spp); if (misalignment > 0) { RFNOC_LOG_TRACE("Reduce spp by " << misalignment << " to align with atomic item size"); this->tx_streamer_impl::set_max_num_samps(spp - misalignment); } } }); } void rfnoc_tx_streamer::_handle_tx_event_action( const res_source_info& src, tx_event_action_info::sptr tx_event_action) { UHD_ASSERT_THROW(src.type == res_source_info::OUTPUT_EDGE); uhd::async_metadata_t md; md.event_code = tx_event_action->event_code; md.channel = src.instance; md.has_time_spec = tx_event_action->has_tsf; if (md.has_time_spec) { md.time_spec = time_spec_t::from_ticks(tx_event_action->tsf, get_tick_rate()); } RFNOC_LOG_TRACE("Pushing metadata onto tx async msg queue, channel " << md.channel); _async_msg_queue->enqueue(md); }