// // Copyright 2019 Ettus Research, a National Instruments Brand // // SPDX-License-Identifier: GPL-3.0-or-later // #include #include #include #include #include using namespace uhd::rfnoc; noc_block_base::make_args_t::~make_args_t() = default; /****************************************************************************** * Structors *****************************************************************************/ noc_block_base::noc_block_base(make_args_ptr make_args) : register_iface_holder(std::move(make_args->reg_iface)) , _noc_id(make_args->noc_id) , _block_id(make_args->block_id) , _num_input_ports(make_args->num_input_ports) , _num_output_ports(make_args->num_output_ports) , _chdr_w(make_args->chdr_w) , _ctrlport_clock_iface(make_args->ctrlport_clk_iface) , _tb_clock_iface(make_args->tb_clk_iface) , _mb_controller(std::move(make_args->mb_control)) , _block_args(make_args->args) , _tree(make_args->tree) { RFNOC_LOG_TRACE("Using timebase clock: `" << _tb_clock_iface->get_name() << "'. Current frequency: " << (_tb_clock_iface->get_freq() / 1e6) << " MHz"); RFNOC_LOG_TRACE("Using ctrlport clock: `" << _ctrlport_clock_iface->get_name() << "'. Current frequency: " << (_ctrlport_clock_iface->get_freq() / 1e6) << " MHz"); // First, create one tick_rate property for every port _tick_rate_props.reserve(get_num_input_ports() + get_num_output_ports()); for (size_t input_port = 0; input_port < get_num_input_ports(); input_port++) { _tick_rate_props.push_back(property_t(PROP_KEY_TICK_RATE, _tb_clock_iface->get_freq(), {res_source_info::INPUT_EDGE, input_port})); } for (size_t output_port = 0; output_port < get_num_output_ports(); output_port++) { _tick_rate_props.push_back(property_t(PROP_KEY_TICK_RATE, _tb_clock_iface->get_freq(), {res_source_info::OUTPUT_EDGE, output_port})); } // Register all the tick_rate properties and create a default resolver prop_ptrs_t tick_rate_prop_refs; tick_rate_prop_refs.reserve(_tick_rate_props.size()); for (auto& prop : _tick_rate_props) { tick_rate_prop_refs.insert(&prop); register_property(&prop); } for (auto& prop : _tick_rate_props) { auto prop_refs_copy = tick_rate_prop_refs; add_property_resolver( {&prop}, std::move(prop_refs_copy), [this, source_prop = &prop]() { // _set_tick_rate() will update _tick_rate, but only if that's // a valid operation for this block this->_set_tick_rate(source_prop->get()); // Now, _tick_rate is valid and we will pass its value to all // tick_rate properties for (property_t& tick_rate_prop : _tick_rate_props) { tick_rate_prop = get_tick_rate(); } }); } // Now, the same thing for MTU props // Create one mtu property for every port _mtu_props.reserve(_num_input_ports + _num_output_ports); for (size_t input_port = 0; input_port < _num_input_ports; input_port++) { _mtu_props.push_back(property_t( PROP_KEY_MTU, make_args->mtu, {res_source_info::INPUT_EDGE, input_port})); _mtu.insert({{res_source_info::INPUT_EDGE, input_port}, make_args->mtu}); } for (size_t output_port = 0; output_port < _num_output_ports; output_port++) { _mtu_props.push_back(property_t( PROP_KEY_MTU, make_args->mtu, {res_source_info::OUTPUT_EDGE, output_port})); _mtu.insert({{res_source_info::OUTPUT_EDGE, output_port}, make_args->mtu}); } // Register all the mtu properties and create a default resolver prop_ptrs_t mtu_prop_refs; mtu_prop_refs.reserve(_mtu_props.size()); for (auto& prop : _mtu_props) { mtu_prop_refs.insert(&prop); register_property(&prop); } // If an MTU edge property value changes, this resolver will coerce the // value to the smaller of the new value or the existing MTU value on that // edge (`_mtu`). This is default behavior that *must* be present for all // MTU edge properties on all NoC blocks regardless of the current MTU // forwarding policy. Yes, this even happens with the default `DROP` // forwarding policy. // // Why is this behavior implemented in its own separate resolver and not // rolled into `set_mtu_forwarding_policy()`, which is responsible for // registering resolvers that have accurate output sensitivity lists based // on the desired MTU forwarding policy? The reason is to allow blocks to // implement custom MTU forwarding policies, but to ensure that this // default behavior is always present (remember, this behavior should // happen regardless of the MTU forwarding policy). // // Let's take the DDC block for example, whose MTU forwarding policy is // `ONE_TO_ONE`. When a DDC block is constructed, `noc_block_base` is // constructed first because it is a superclass of the DDC block. The // default MTU property resolvers are added to the list of resolvers for // the block. Then the DDC block constructor runs, and calls // `set_mtu_forwarding_policy(ONE_TO_ONE)`. We can't go and remove the // existing MTU edge property resolvers to modify them, or even modify // them in place--there's simply no way to do that given that the list of // property resolvers is private to `node_t` (`noc_block_base`'s // superclass), and there is no way to modify that list except to add new // entries to it via `add_property_resolver()`. So calling // `set_mtu_forwarding_policy()` adds a *new* set of resolvers for each MTU // property that adds the *additional* behaviors dictated by the forwarding // policy. // // This implies there is now an ordering dependency on how dirty properties // are resolved. The default coercing resolver *MUST* execute first, to // determine what the MTU value should be, and *THEN* any propagation of // that value based on the forwarding policy can take place. UHD satisfies // this ordering dependency because: // a) The list of property resolvers for a node is maintained in a // vector, and adding new resolvers is always performed by a // `push_back()` (see `node_t::add_property_resolver()`), so it is // guaranteed that the default coercing resolver is added first since // it's done in the `noc_block_base` constructor. // b) `resolve_props()` and `init_props()`, `node_t` functions which // perform property resolution, always iterate the resolver vector // in order (i.e., items 0..n-1), ensuring that the resolvers are // called in the same order in which they were added to the vector. for (auto& prop : _mtu_props) { add_property_resolver({&prop}, {&prop}, [this, source_prop = &prop]() { const res_source_info src_edge = source_prop->get_src_info(); // Coerce the MTU to its appropriate min value const size_t new_mtu = std::min(source_prop->get(), _mtu.at(src_edge)); source_prop->set(new_mtu); _mtu.at(src_edge) = source_prop->get(); RFNOC_LOG_TRACE("MTU is now " << _mtu.at(src_edge) << " on edge " << src_edge.to_string()); }); } } noc_block_base::~noc_block_base() { for (const auto& node : _tree->list("")) { _tree->remove(node); } } void noc_block_base::set_num_input_ports(const size_t num_ports) { if (num_ports > get_num_input_ports()) { throw uhd::value_error( "New number of input ports must not exceed current number!"); } _num_input_ports = num_ports; } void noc_block_base::set_num_output_ports(const size_t num_ports) { if (num_ports > get_num_output_ports()) { throw uhd::value_error( "New number of output ports must not exceed current number!"); } _num_output_ports = num_ports; } double noc_block_base::get_tick_rate() const { return _tb_clock_iface->get_freq(); } void noc_block_base::set_tick_rate(const double tick_rate) { if (tick_rate == get_tick_rate()) { return; } // Update this node RFNOC_LOG_TRACE("Setting tb clock freq to " << tick_rate / 1e6 << " MHz"); _tb_clock_iface->set_freq(tick_rate); // Now trigger property propagation if (!_tick_rate_props.empty()) { auto src_info = _tick_rate_props.at(0).get_src_info(); set_property(PROP_KEY_TICK_RATE, tick_rate, src_info); } } void noc_block_base::_set_tick_rate(const double tick_rate) { if (tick_rate == get_tick_rate()) { return; } if (tick_rate <= 0) { RFNOC_LOG_WARNING("Attempting to set tick rate to 0. Skipping.") return; } if (_tb_clock_iface->get_name() == CLOCK_KEY_GRAPH) { RFNOC_LOG_TRACE("Updating tick rate to " << (tick_rate / 1e6) << " MHz"); _tb_clock_iface->set_freq(tick_rate); } else { RFNOC_LOG_WARNING("Cannot change tick rate to " << (tick_rate / 1e6) << " MHz, this clock is not configurable by the graph!"); } } void noc_block_base::set_mtu_forwarding_policy(const forwarding_policy_t policy) { // Error if the MTU forwarding policy has already been set--it can only be // set once per instance of the block if (_mtu_fwd_policy_set) { RFNOC_LOG_ERROR("Attempt to re-set MTU forwarding policy"); throw uhd::runtime_error("MTU forwarding policy can only be set once per " "NoC block instance"); } _mtu_fwd_policy_set = true; if (policy == forwarding_policy_t::DROP || policy == forwarding_policy_t::ONE_TO_ONE || policy == forwarding_policy_t::ONE_TO_ALL || policy == forwarding_policy_t::ONE_TO_FAN) { _mtu_fwd_policy = policy; } else { RFNOC_LOG_ERROR("Setting invalid MTU forwarding policy!"); throw uhd::value_error("MTU forwarding policy must be either DROP, ONE_TO_ONE, " "ONE_TO_ALL, or ONE_TO_FAN!"); } // The behavior for DROP is already implemented in the default resolvers // that are registered in the `noc_block_base` constructor, so calling // `set_mtu_forwarding_policy(DROP)` is effectively a no-op (but legal, // so we should support it). if (policy == forwarding_policy_t::DROP) { return; } // Determine the set of MTU properties that should be in the output // sensitivity list based on the selected MTU forwarding policy. Note // that the input property itself (`prop` in the iteration below) is // not added to the output sensitivity list because it will have already // been resolved by its own separate default coercing resolver which was // registered at `noc_block_base` construction time. See the massive // comment in the constructor for why. for (auto& prop : _mtu_props) { const res_source_info src_edge = prop.get_src_info(); prop_ptrs_t output_props{}; for (auto& other_prop : _mtu_props) { const res_source_info dst_edge = other_prop.get_src_info(); bool add_to_output_props = false; switch (_mtu_fwd_policy) { case forwarding_policy_t::ONE_TO_ONE: add_to_output_props = res_source_info::invert_edge(dst_edge.type) == src_edge.type && dst_edge.instance == src_edge.instance; break; case forwarding_policy_t::ONE_TO_ALL: add_to_output_props = dst_edge.type != src_edge.type && dst_edge.instance != src_edge.instance; break; case forwarding_policy_t::ONE_TO_FAN: add_to_output_props = res_source_info::invert_edge(dst_edge.type) == src_edge.type; break; default: UHD_THROW_INVALID_CODE_PATH(); } if (add_to_output_props) { output_props.insert(&other_prop); } } add_property_resolver({&prop}, std::move(output_props), [this, dst_props = output_props, source_prop = &prop]() { const res_source_info src_edge = source_prop->get_src_info(); const size_t new_mtu = std::min(source_prop->get(), _mtu.at(src_edge)); // Set the new MTU on all the dependent output MTU edge props for (auto& dst_prop : dst_props) { auto mtu_prop = dynamic_cast*>(dst_prop); RFNOC_LOG_TRACE("Forwarding new MTU value to edge " << mtu_prop->get_src_info().to_string()); mtu_prop->set(new_mtu); _mtu.at(mtu_prop->get_src_info()) = mtu_prop->get(); } }); } } void noc_block_base::set_mtu(const res_source_info& edge, const size_t new_mtu) { if (edge.type != res_source_info::INPUT_EDGE && edge.type != res_source_info::OUTPUT_EDGE) { throw uhd::value_error( "set_mtu() must be called on either an input or output edge!"); } set_property(PROP_KEY_MTU, new_mtu, edge); } size_t noc_block_base::get_mtu(const res_source_info& edge) { if (!_mtu.count(edge)) { throw uhd::value_error( std::string("Cannot get MTU on edge: ") + edge.to_string()); } return _mtu.at(edge); } size_t noc_block_base::get_chdr_hdr_len(const bool account_for_ts) const { const size_t header_len_bytes = chdr_w_to_bits(_chdr_w) / 8; // 64-bit CHDR requires two lines for the header if we use a timestamp, // everything else requires one line const size_t num_hdr_lines = (account_for_ts && _chdr_w == CHDR_W_64) ? 2 : 1; return header_len_bytes * num_hdr_lines; } size_t noc_block_base::get_max_payload_size( const res_source_info& edge, const bool account_for_ts) { return get_mtu(edge) - get_chdr_hdr_len(account_for_ts); } property_base_t* noc_block_base::get_mtu_prop_ref(const res_source_info& edge) { for (size_t mtu_prop_idx = 0; mtu_prop_idx < _mtu_props.size(); mtu_prop_idx++) { if (_mtu_props.at(mtu_prop_idx).get_src_info() == edge) { return &_mtu_props.at(mtu_prop_idx); } } throw uhd::value_error( std::string("Could not find MTU property for edge: ") + edge.to_string()); } void noc_block_base::shutdown() { RFNOC_LOG_TRACE("Calling deinit()"); deinit(); RFNOC_LOG_DEBUG("Invalidating register interface"); update_reg_iface(); } std::shared_ptr noc_block_base::get_mb_controller() { return _mb_controller; } void noc_block_base::deinit() { RFNOC_LOG_DEBUG("deinit() called, but not implemented."); }