// // Copyright 2016-2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include "dsp_core_utils.hpp" #include #include #include #include #include #include #include #include #include using namespace uhd::rfnoc; class duc_block_ctrl_impl : public duc_block_ctrl { public: UHD_RFNOC_BLOCK_CONSTRUCTOR(duc_block_ctrl) , _fpga_compat(user_reg_read64(RB_REG_COMPAT_NUM)) , _num_halfbands(uhd::narrow_cast( user_reg_read64(RB_REG_NUM_HALFBANDS))) , _cic_max_interp(uhd::narrow_cast( user_reg_read64(RB_REG_CIC_MAX_INTERP))) { UHD_LOG_DEBUG(unique_id(), "Loading DUC with " << get_num_halfbands() << " halfbands and " "max CIC interpolation " << get_cic_max_interp() ); uhd::assert_fpga_compat( MAJOR_COMP, MINOR_COMP, _fpga_compat, "DUC", "DUC", false /* Let it slide if minors mismatch */ ); // Argument/prop tree hooks for (size_t chan = 0; chan < get_input_ports().size(); chan++) { const double default_freq = get_arg("freq", chan); _tree->access(get_arg_path("freq/value", chan)) .set_coercer([this, chan](const double value){ return this->set_freq(value, chan); }) .set(default_freq); ; const double default_input_rate = get_arg("input_rate", chan); _tree->access(get_arg_path("input_rate/value", chan)) .set_coercer([this, chan](const double value){ return this->set_input_rate(value, chan); }) .set(default_input_rate) ; _tree->access(get_arg_path("output_rate/value", chan)) .add_coerced_subscriber([this, chan](const double rate){ this->set_output_rate(rate, chan); }) ; // Legacy properties (for backward compat w/ multi_usrp) const uhd::fs_path dsp_base_path = _root_path / "legacy_api" / chan; // Legacy properties _tree->create(dsp_base_path / "rate/value") .set_coercer([this, chan](const double value){ return this->_tree->access( this->get_arg_path("input_rate/value", chan) ).set(value).get(); }) .set_publisher([this, chan](){ return this->_tree->access( this->get_arg_path("input_rate/value", chan) ).get(); }) ; _tree->create(dsp_base_path / "rate/range") .set_publisher([this](){ return get_input_rates(); }) ; _tree->create(dsp_base_path / "freq/value") .set_coercer([this, chan](const double value){ return this->_tree->access( this->get_arg_path("freq/value", chan) ).set(value).get(); }) .set_publisher([this, chan](){ return this->_tree->access( this->get_arg_path("freq/value", chan) ).get(); }) ; _tree->create(dsp_base_path / "freq/range") .set_publisher([this](){ return get_freq_range(); }) ; _tree->access("time/cmd") .add_coerced_subscriber([this, chan](const uhd::time_spec_t time_spec){ this->set_command_time(time_spec, chan); }) ; if (_tree->exists("tick_rate")) { const double tick_rate = _tree->access("tick_rate").get(); set_command_tick_rate(tick_rate, chan); _tree->access("tick_rate") .add_coerced_subscriber([this, chan](const double rate){ this->set_command_tick_rate(rate, chan); }) ; } // Rate 1:1 by default sr_write("N", 1, chan); sr_write("M", 1, chan); sr_write("CONFIG", 1, chan); // Enable clear EOB } } // end ctor virtual ~duc_block_ctrl_impl() {} double get_input_scale_factor(size_t port=ANY_PORT) { port = (port == ANY_PORT) ? 0 : port; if (not (_tx_streamer_active.count(port) and _tx_streamer_active.at(port))) { return SCALE_UNDEFINED; } return get_arg("scalar_correction", port); } double get_input_samp_rate(size_t port=ANY_PORT) { port = (port == ANY_PORT) ? 0 : port; // Wait, what? If this seems out of place to you, you're right. However, // we need a function call that is called when the graph is complete, // but streaming is not yet set up. if (_tree->exists("tick_rate")) { const double tick_rate = _tree->access("tick_rate").get(); set_command_tick_rate(tick_rate, port); } if (not (_tx_streamer_active.count(port) and _tx_streamer_active.at(port))) { return RATE_UNDEFINED; } return get_arg("input_rate", port); } double get_output_samp_rate(size_t port=ANY_PORT) { port = (port == ANY_PORT) ? 0 : port; if (not (_tx_streamer_active.count(port) and _tx_streamer_active.at(port))) { return RATE_UNDEFINED; } return get_arg("output_rate", port == ANY_PORT ? 0 : port); } void issue_stream_cmd( const uhd::stream_cmd_t &stream_cmd_, const size_t chan ) { UHD_RFNOC_BLOCK_TRACE() << "duc_block_ctrl_base::issue_stream_cmd()" ; uhd::stream_cmd_t stream_cmd = stream_cmd_; if (stream_cmd.stream_mode == uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE or stream_cmd.stream_mode == uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_MORE) { size_t interpolation = get_arg("output_rate", chan) / get_arg("input_rate", chan); stream_cmd.num_samps *= interpolation; } for(const node_ctrl_base::node_map_pair_t upstream_node: list_upstream_nodes()) { source_node_ctrl::sptr this_upstream_block_ctrl = boost::dynamic_pointer_cast(upstream_node.second.lock()); this_upstream_block_ctrl->issue_stream_cmd(stream_cmd, chan); } } private: static constexpr size_t MAJOR_COMP = 1; static constexpr size_t MINOR_COMP = 0; static constexpr size_t RB_REG_COMPAT_NUM = 0; static constexpr size_t RB_REG_NUM_HALFBANDS = 1; static constexpr size_t RB_REG_CIC_MAX_INTERP = 2; const uint64_t _fpga_compat; const size_t _num_halfbands; const size_t _cic_max_interp; //! Set the CORDIC frequency shift the signal to \p requested_freq double set_freq(const double requested_freq, const size_t chan) { const double output_rate = get_arg("output_rate"); double actual_freq; int32_t freq_word; get_freq_and_freq_word(requested_freq, output_rate, actual_freq, freq_word); // Xilinx CORDIC uses a different format for the phase increment, hence the divide-by-four: sr_write("CORDIC_FREQ", uint32_t(freq_word/4), chan); return actual_freq; } //! Return a range of valid frequencies the CORDIC can tune to uhd::meta_range_t get_freq_range(void) { const double output_rate = get_arg("output_rate"); return uhd::meta_range_t( -output_rate/2, +output_rate/2, output_rate/std::pow(2.0, 32) ); } uhd::meta_range_t get_input_rates(void) { uhd::meta_range_t range; const double output_rate = get_arg("output_rate"); for (int hb = _num_halfbands; hb >= 0; hb--) { const size_t interp_offset = _cic_max_interp<<(hb-1); for(size_t interp = _cic_max_interp; interp > 0; interp--) { const size_t hb_cic_interp = interp*(1< interp_offset) { range.push_back(uhd::range_t(output_rate/hb_cic_interp)); } } } return range; } double set_input_rate(const int requested_rate, const size_t chan) { const double output_rate = get_arg("output_rate", chan); const size_t interp_rate = boost::math::iround(output_rate/get_input_rates().clip(requested_rate, true)); size_t interp = interp_rate; uint32_t hb_enable = 0; while ((interp % 2 == 0) and hb_enable < _num_halfbands) { hb_enable++; interp /= 2; } UHD_ASSERT_THROW(hb_enable <= _num_halfbands); UHD_ASSERT_THROW(interp > 0 and interp <= _cic_max_interp); // What we can't cover with halfbands, we do with the CIC sr_write("INTERP_WORD", (hb_enable << 8) | (interp & 0xff), chan); // Rate change = M/N sr_write("N", 1, chan); sr_write("M", std::pow(2.0, double(hb_enable)) * (interp & 0xff), chan); if (interp > 1 and hb_enable == 0) { UHD_LOGGER_WARNING("RFNOC") << boost::format( "The requested interpolation is odd; the user should expect passband CIC rolloff.\n" "Select an even interpolation to ensure that a halfband filter is enabled.\n" "interpolation = dsp_rate/samp_rate -> %d = (%f MHz)/(%f MHz)\n" ) % interp_rate % (output_rate/1e6) % (requested_rate/1e6); } // Calculate algorithmic gain of CIC for a given interpolation // For Ettus CIC R=interp, M=1, N=4. Gain = (R * M) ^ (N - 1) const int CIC_N = 4; const double rate_pow = std::pow(double(interp & 0xff), CIC_N - 1); // Experimentally determined value to scale the output to [-1, 1] // This must also encompass the CORDIC gain static const double CONSTANT_GAIN = 1.1644; const double scaling_adjustment = std::pow(2, uhd::math::ceil_log2(rate_pow))/(CONSTANT_GAIN*rate_pow); update_scalar(scaling_adjustment, chan); return output_rate/interp_rate; } //! Set frequency and interpolation again void set_output_rate(const double /* rate */, const size_t chan) { const double desired_freq = _tree->access(get_arg_path("freq", chan) / "value").get_desired(); set_arg("freq", desired_freq, chan); const double desired_input_rate = _tree->access(get_arg_path("input_rate", chan) / "value").get_desired(); set_arg("input_rate", desired_input_rate, chan); } // Calculate compensation gain values for algorithmic gain of CORDIC and CIC taking into account // gain compensation blocks already hardcoded in place in DUC (that provide simple 1/2^n gain compensation). // Further more factor in OTW format which adds further gain factor to weight output samples correctly. void update_scalar(const double scalar, const size_t chan) { const double target_scalar = (1 << 15) * scalar; const int32_t actual_scalar = boost::math::iround(target_scalar); // Calculate the error introduced by using integer representation for the scalar const double scalar_correction = actual_scalar / target_scalar * (double(1 << 15) - 1.0) // Rounding error, normalized to 1.0 * get_arg("fullscale"); // Scaling requested by host set_arg("scalar_correction", scalar_correction, chan); // Write DUC with scaling correction for CIC and CORDIC that maximizes dynamic range in 32/16/12/8bits. sr_write("SCALE_IQ", actual_scalar, chan); } //! Get cached value of FPGA compat number uint64_t get_fpga_compat() const { return _fpga_compat; } //Get cached value of _num_halfbands size_t get_num_halfbands() const { return _num_halfbands; } //Get cached value of _cic_max_decim readback size_t get_cic_max_interp() const { return _cic_max_interp; } }; UHD_RFNOC_BLOCK_REGISTER(duc_block_ctrl, "DUC");