// // Copyright 2019 Ettus Research, a National Instruments Brand // // SPDX-License-Identifier: GPL-3.0-or-later // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace { constexpr double DEFAULT_SCALING = 1.0; constexpr int DEFAULT_INTERP = 1; constexpr double DEFAULT_FREQ = 0.0; const uhd::rfnoc::io_type_t DEFAULT_TYPE = uhd::rfnoc::IO_TYPE_SC16; //! Space (in bytes) between register banks per channel constexpr uint32_t REG_CHAN_OFFSET = 2048; } // namespace using namespace uhd::rfnoc; const uint16_t duc_block_control::MINOR_COMPAT = 1; const uint16_t duc_block_control::MAJOR_COMPAT = 0; const uint32_t duc_block_control::RB_COMPAT_NUM = 0; // read this first const uint32_t duc_block_control::RB_NUM_HB = 8; const uint32_t duc_block_control::RB_CIC_MAX_INTERP = 16; const uint32_t duc_block_control::SR_N_ADDR = 128 * 8; const uint32_t duc_block_control::SR_M_ADDR = 129 * 8; const uint32_t duc_block_control::SR_CONFIG_ADDR = 130 * 8; const uint32_t duc_block_control::SR_INTERP_ADDR = 131 * 8; const uint32_t duc_block_control::SR_FREQ_ADDR = 132 * 8; const uint32_t duc_block_control::SR_SCALE_IQ_ADDR = 133 * 8; const uint32_t duc_block_control::SR_TIME_INCR_ADDR = 137 * 8; class duc_block_control_impl : public duc_block_control { public: RFNOC_BLOCK_CONSTRUCTOR(duc_block_control) , _duc_reg_iface(*this, 0, REG_CHAN_OFFSET), _fpga_compat(regs().peek32(RB_COMPAT_NUM)), _num_halfbands(regs().peek32(RB_NUM_HB)), _cic_max_interp(regs().peek32(RB_CIC_MAX_INTERP)), _residual_scaling(get_num_input_ports(), DEFAULT_SCALING) { UHD_ASSERT_THROW(get_num_input_ports() == get_num_output_ports()); UHD_ASSERT_THROW(_cic_max_interp > 0 && _cic_max_interp <= 0xFF); uhd::assert_fpga_compat(MAJOR_COMPAT, MINOR_COMPAT, _fpga_compat, get_unique_id(), get_unique_id(), false /* Let it slide if minors mismatch */ ); RFNOC_LOG_DEBUG("Loading DUC with " << _num_halfbands << " halfbands and " "max CIC interpolation " << _cic_max_interp); // Load list of valid interpolation values std::set interps{1}; // 1 is always a valid interpolation for (size_t hb = 0; hb < _num_halfbands; hb++) { for (size_t cic_interp = 1; cic_interp <= _cic_max_interp; cic_interp++) { interps.insert((1 << hb) * cic_interp); } } for (size_t interp : interps) { _valid_interps.push_back(uhd::range_t(double(interp))); } // Initialize properties. It is very important to first reserve the // space, because we use push_back() further down, and properties must // not change their base address after registration and resolver // creation. _samp_rate_in.reserve(get_num_ports()); _samp_rate_out.reserve(get_num_ports()); _scaling_in.reserve(get_num_ports()); _scaling_out.reserve(get_num_ports()); _interp.reserve(get_num_ports()); _freq.reserve(get_num_ports()); _type_in.reserve(get_num_ports()); _type_out.reserve(get_num_ports()); for (size_t chan = 0; chan < get_num_ports(); chan++) { _register_props(chan); } register_issue_stream_cmd(); } double set_freq(const double freq, const size_t chan, const boost::optional time) override { // Store the current command time so we can restore it later auto prev_cmd_time = get_command_time(chan); if (time) { set_command_time(time.get(), chan); } // This will trigger property propagation: set_property("freq", freq, chan); set_command_time(prev_cmd_time, chan); return get_freq(chan); } double get_freq(const size_t chan) const override { return _freq.at(chan).get(); } uhd::freq_range_t get_frequency_range(const size_t chan) const override { const double input_rate = _samp_rate_in.at(chan).is_valid() ? _samp_rate_in.at(chan).get() : 1.0; // TODO add steps return uhd::freq_range_t(-input_rate / 2, input_rate / 2); } double get_input_rate(const size_t chan) const override { return _samp_rate_in.at(chan).is_valid() ? _samp_rate_in.at(chan).get() : 1.0; } double get_output_rate(const size_t chan) const override { return _samp_rate_out.at(chan).is_valid() ? _samp_rate_out.at(chan).get() : 1.0; } void set_output_rate(const double rate, const size_t chan) override { set_property("samp_rate", rate, {res_source_info::OUTPUT_EDGE, chan}); } uhd::meta_range_t get_input_rates(const size_t chan) const override { uhd::meta_range_t result; if (!_samp_rate_out.at(chan).is_valid()) { result.push_back(uhd::range_t(1.0)); return result; } const double output_rate = _samp_rate_out.at(chan).get(); // The interpolations are stored in order (from smallest to biggest), so // iterate in reverse order so we can add rates from smallest to biggest for (auto it = _valid_interps.rbegin(); it != _valid_interps.rend(); ++it) { result.push_back(uhd::range_t(output_rate / it->start())); } return result; } double set_input_rate(const double rate, const size_t chan) override { if (_samp_rate_out.at(chan).is_valid()) { const int coerced_interp = coerce_interp(get_output_rate(chan) / rate); set_property("interp", coerced_interp, chan); } else { RFNOC_LOG_DEBUG( "Property samp_rate@" << chan << " is not valid, attempting to set input rate via the edge property."); set_property("samp_rate", rate, {res_source_info::INPUT_EDGE, chan}); } return _samp_rate_in.at(chan).get(); } protected: //! Block-specific register interface multichan_register_iface _duc_reg_iface; private: //! Shorthand for num ports, since num input ports always equals num output ports inline size_t get_num_ports() { return get_num_input_ports(); } /************************************************************************** * Initialization *************************************************************************/ void _register_props(const size_t chan) { // Create actual properties and store them _samp_rate_in.push_back( property_t(PROP_KEY_SAMP_RATE, {res_source_info::INPUT_EDGE, chan})); _samp_rate_out.push_back( property_t(PROP_KEY_SAMP_RATE, {res_source_info::OUTPUT_EDGE, chan})); _scaling_in.push_back( property_t(PROP_KEY_SCALING, {res_source_info::INPUT_EDGE, chan})); _scaling_out.push_back( property_t(PROP_KEY_SCALING, {res_source_info::OUTPUT_EDGE, chan})); _interp.push_back(property_t( PROP_KEY_INTERP, DEFAULT_INTERP, {res_source_info::USER, chan})); _freq.push_back(property_t( PROP_KEY_FREQ, DEFAULT_FREQ, {res_source_info::USER, chan})); _type_in.emplace_back(property_t( PROP_KEY_TYPE, IO_TYPE_SC16, {res_source_info::INPUT_EDGE, chan})); _type_out.emplace_back(property_t( PROP_KEY_TYPE, IO_TYPE_SC16, {res_source_info::OUTPUT_EDGE, chan})); UHD_ASSERT_THROW(_samp_rate_in.size() == chan + 1); UHD_ASSERT_THROW(_samp_rate_out.size() == chan + 1); UHD_ASSERT_THROW(_scaling_in.size() == chan + 1); UHD_ASSERT_THROW(_scaling_out.size() == chan + 1); UHD_ASSERT_THROW(_interp.size() == chan + 1); UHD_ASSERT_THROW(_freq.size() == chan + 1); UHD_ASSERT_THROW(_type_in.size() == chan + 1); UHD_ASSERT_THROW(_type_out.size() == chan + 1); // give us some shorthands for the rest of this function property_t* samp_rate_in = &_samp_rate_in.back(); property_t* samp_rate_out = &_samp_rate_out.back(); property_t* scaling_in = &_scaling_in.back(); property_t* scaling_out = &_scaling_out.back(); property_t* interp = &_interp.back(); property_t* freq = &_freq.back(); property_t* type_in = &_type_in.back(); property_t* type_out = &_type_out.back(); // register them register_property(samp_rate_in); register_property(samp_rate_out); register_property(scaling_in); register_property(scaling_out); register_property(interp); register_property(freq); register_property(type_in); register_property(type_out); /********************************************************************** * Add resolvers *********************************************************************/ // Resolver for _interp: this gets executed when the user directly // modifies interp. the desired behaviour is to coerce it first, then // keep the output rate constant, and re-calculate the input rate. add_property_resolver({interp, scaling_in}, {interp, samp_rate_out, samp_rate_in, scaling_in}, [this, chan, &interp = *interp, &samp_rate_out = *samp_rate_out, &samp_rate_in = *samp_rate_in, &scaling_in = *scaling_in, &scaling_out = *scaling_out]() { RFNOC_LOG_TRACE("Calling resolver for `interp'@" << chan); interp = coerce_interp(double(interp.get())); // The following function will also update _residual_scaling if (interp.is_dirty()) { set_interp(interp.get(), chan); } if (samp_rate_out.is_valid()) { const double new_samp_rate_in = samp_rate_out.get() / interp.get(); if (samp_rate_in.is_valid()) { // Only update the samp_rate_in if the new value is not the same // frequency. However, we still want to call the operator= to make // sure metadata gets handled samp_rate_in = uhd::math::frequencies_are_equal( new_samp_rate_in, samp_rate_in.get()) ? samp_rate_in.get() : new_samp_rate_in; } else { samp_rate_in = new_samp_rate_in; } } else if (samp_rate_in.is_valid()) { const double new_samp_rate_out = samp_rate_in.get() * interp.get(); if (samp_rate_out.is_valid()) { // Only update if the new value is not the same frequency samp_rate_out = uhd::math::frequencies_are_equal( new_samp_rate_out, samp_rate_out.get()) ? samp_rate_out.get() : new_samp_rate_out; } else { samp_rate_out = new_samp_rate_out; } } // The scaling is independent of the actual rates if (scaling_out.is_valid()) { scaling_in = scaling_out.get() * _residual_scaling.at(chan); } }); // Resolver for _freq: this gets executed when the user directly // modifies _freq. add_property_resolver({freq}, {freq}, [this, chan, &samp_rate_out = *samp_rate_out, &freq = *freq]() { RFNOC_LOG_TRACE("Calling resolver for `freq'@" << chan); if (samp_rate_out.is_valid()) { const double new_freq = _set_freq(freq.get(), samp_rate_out.get(), chan); // If the frequency we just set is sufficiently close to the old // frequency, don't bother updating the property in software if (!uhd::math::frequencies_are_equal(new_freq, freq.get())) { freq = new_freq; } } else { RFNOC_LOG_DEBUG("Not setting frequency until sampling rate is set."); } }); // Resolver for the input rate: we try and match interp so that the // output rate is not modified. if interp needs to be coerced, only then // the output rate is modified. // Note this might also affect the frequency (if the output rate is // modified). add_property_resolver({samp_rate_in}, {interp, samp_rate_out}, [this, chan, &interp = *interp, &samp_rate_out = *samp_rate_out, &samp_rate_in = *samp_rate_in]() { RFNOC_LOG_TRACE("Calling resolver for `samp_rate_in'@" << chan); if (samp_rate_in.is_valid()) { RFNOC_LOG_TRACE("New samp_rate_in is " << samp_rate_in.get()); // If interp is changed, that will take care of scaling if (samp_rate_out.is_valid()) { interp = coerce_interp(samp_rate_out.get() / samp_rate_in.get()); } const double new_samp_rate_out = samp_rate_in.get() * interp.get(); if (samp_rate_out.is_valid()) { // Only update if the new value is not the same frequency samp_rate_out = uhd::math::frequencies_are_equal( new_samp_rate_out, samp_rate_out.get()) ? samp_rate_out.get() : new_samp_rate_out; } else { samp_rate_out = new_samp_rate_out; } RFNOC_LOG_TRACE("New samp_rate_out is " << samp_rate_out.get()); } }); // Resolver for the output rate: like the previous one, but flipped. add_property_resolver({samp_rate_out}, {interp, samp_rate_in, freq}, [this, chan, &interp = *interp, &freq = *freq, &samp_rate_out = *samp_rate_out, &samp_rate_in = *samp_rate_in]() { RFNOC_LOG_TRACE("Calling resolver for `samp_rate_out'@" << chan); if (samp_rate_out.is_valid()) { // If interp is changed, that will take care of scaling if (samp_rate_in.is_valid()) { interp = coerce_interp(int(samp_rate_out.get() / samp_rate_in.get())); } const double new_samp_rate_in = samp_rate_out.get() / interp.get(); if (samp_rate_in.is_valid()) { // Only update if the new value is not the same frequency samp_rate_in = uhd::math::frequencies_are_equal( new_samp_rate_in, samp_rate_in.get()) ? samp_rate_in.get() : new_samp_rate_in; } else { samp_rate_in = new_samp_rate_in; } // We now need to force the resolver for freq to run so it can // update its phase increment freq.force_dirty(); } }); // Resolver for the output rate: like the previous one, but flipped. add_property_resolver({scaling_out}, {scaling_in}, [this, chan, &interp = *interp, &samp_rate_out = *samp_rate_out, &samp_rate_in = *samp_rate_in, &scaling_in = *scaling_in, &scaling_out = *scaling_out]() { RFNOC_LOG_TRACE("Calling resolver for `scaling_out'@" << chan); // If any of these are dirty, the interp resolver will kick in // and calculate the scaling itself, so we don't do it here to // avoid conflict. if (!interp.is_dirty() && !samp_rate_in.is_dirty() && !samp_rate_out.is_dirty() && scaling_out.is_valid()) { scaling_in = scaling_out.get() * _residual_scaling.at(chan); } }); // Resolvers for type: These are constants add_property_resolver({type_in}, {type_in}, [& type_in = *type_in]() { type_in.set(IO_TYPE_SC16); }); add_property_resolver({type_out}, {type_out}, [& type_out = *type_out]() { type_out.set(IO_TYPE_SC16); }); } void register_issue_stream_cmd() { register_action_handler(ACTION_KEY_STREAM_CMD, [this](const res_source_info& src, action_info::sptr action) { stream_cmd_action_info::sptr stream_cmd_action = std::dynamic_pointer_cast(action); if (!stream_cmd_action) { throw uhd::runtime_error( "Received stream_cmd of invalid action type!"); } issue_stream_cmd_action_handler(src, stream_cmd_action); }); } void issue_stream_cmd_action_handler( const res_source_info& src, stream_cmd_action_info::sptr stream_cmd_action) { res_source_info dst_edge{res_source_info::invert_edge(src.type), src.instance}; const size_t chan = src.instance; uhd::stream_cmd_t::stream_mode_t stream_mode = stream_cmd_action->stream_cmd.stream_mode; RFNOC_LOG_TRACE("Received stream command: " << char(stream_mode) << " to " << src.to_string() << ", id==" << stream_cmd_action->id); auto new_action = stream_cmd_action_info::make(stream_mode); new_action->stream_cmd = stream_cmd_action->stream_cmd; if (stream_mode == uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE || stream_mode == uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_MORE) { if (src.type == res_source_info::INPUT_EDGE) { new_action->stream_cmd.num_samps *= _interp.at(chan).get(); } else { new_action->stream_cmd.num_samps /= _interp.at(chan).get(); } RFNOC_LOG_TRACE("Forwarding num_samps stream command, new value is " << new_action->stream_cmd.num_samps); } else { RFNOC_LOG_TRACE("Forwarding continuous stream command...") } post_action(dst_edge, new_action); } /************************************************************************** * FPGA communication (register IO) *************************************************************************/ /*! Update the interpolation value * * \param interp The new interpolation value. * \throws uhd::assertion_error if interp is not valid. */ void set_interp(int interp, const size_t chan) { RFNOC_LOG_TRACE("Set interp to " << interp); // Step 1: Calculate number of halfbands uint32_t hb_enable = 0; uint32_t cic_interp = interp; while ((cic_interp % 2 == 0) and hb_enable < _num_halfbands) { hb_enable++; cic_interp /= 2; } // Step 2: Make sure we can handle the rest with the CIC UHD_ASSERT_THROW(hb_enable <= _num_halfbands); UHD_ASSERT_THROW(cic_interp > 0 and cic_interp <= _cic_max_interp); const uint32_t interp_word = (hb_enable << 8) | cic_interp; _duc_reg_iface.poke32(SR_INTERP_ADDR, interp_word, chan); // Rate change = M/N, where N = 1 _duc_reg_iface.poke32(SR_M_ADDR, interp, chan); _duc_reg_iface.poke32(SR_N_ADDR, 1, chan); // Configure time increment in ticks per M output samples _duc_reg_iface.poke32(SR_TIME_INCR_ADDR, uint32_t(get_tick_rate()/get_output_rate(chan)), chan); if (cic_interp > 1 and hb_enable == 0) { RFNOC_LOG_WARNING( "The requested interpolation is odd; the user should expect passband " "CIC rolloff.\n" "Select an even interpolation to ensure that a halfband filter is " "enabled.\n"); } // DDS gain: constexpr double DDS_GAIN = 1.0; // Calculate algorithmic gain of CIC for a given interpolation. // For Ettus CIC R=interp, M=1, N=4. Gain = (R * M) ^ (N - 1) const double cic_gain = std::pow(double(cic_interp * 1), /*N*/ 4 - 1); // The Ettus CIC also tries its best to compensate for the gain by // shifting the CIC output. This reduces the gain by a factor of // 2**ceil(log2(cic_gain)) const double total_gain = DDS_GAIN * cic_gain / std::pow(2, uhd::math::ceil_log2(cic_gain)); update_scaling(total_gain, chan); } //! Update scaling based on the current gain // // Calculates the closest fixpoint value that this block can correct for in // hardware (fixpoint). The residual gain is written to _residual_scaling. void update_scaling(const double dsp_gain, const size_t chan) { constexpr double FIXPOINT_SCALING = 1 << 15; const double compensation_factor = 1. / dsp_gain; // Convert to fixpoint const double target_factor = FIXPOINT_SCALING * compensation_factor; const int32_t actual_factor = boost::math::iround(target_factor); // Write DUC with scaling correction for CIC and DDS that maximizes // dynamic range _duc_reg_iface.poke32(SR_SCALE_IQ_ADDR, actual_factor, chan); // Calculate the error introduced by using fixedpoint representation for // the scaler, can be corrected in host later. _residual_scaling[chan] = dsp_gain * double(actual_factor) / FIXPOINT_SCALING; } /*! Return the closest possible interpolation value to the one requested */ int coerce_interp(const double requested_interp) const { UHD_ASSERT_THROW(requested_interp >= 0); return static_cast(_valid_interps.clip(requested_interp, true)); } //! Set the DDS frequency shift the signal to \p requested_freq double _set_freq( const double requested_freq, const double input_rate, const size_t chan) { double actual_freq; int32_t freq_word; std::tie(actual_freq, freq_word) = get_freq_and_freq_word(requested_freq, input_rate); _duc_reg_iface.poke32( SR_FREQ_ADDR, uint32_t(freq_word), chan, get_command_time(chan)); return actual_freq; } /************************************************************************** * Attributes *************************************************************************/ //! Block compat number const uint32_t _fpga_compat; //! Number of halfbands const size_t _num_halfbands; //! Max CIC interpolation const size_t _cic_max_interp; //! List of valid interpolation values uhd::meta_range_t _valid_interps; //! Cache the current residual scaling std::vector _residual_scaling; //! Properties for type_in (one per port) std::vector> _type_in; //! Properties for type_out (one per port) std::vector> _type_out; //! Properties for samp_rate_in (one per port) std::vector> _samp_rate_in; //! Properties for samp_rate_out (one per port) std::vector> _samp_rate_out; //! Properties for scaling_in (one per port) std::vector> _scaling_in; //! Properties for scaling_out (one per port) std::vector> _scaling_out; //! Properties for interp (one per port) std::vector> _interp; //! Properties for freq (one per port) std::vector> _freq; }; UHD_RFNOC_BLOCK_REGISTER_DIRECT( duc_block_control, 0xD0C00000, "DUC", CLOCK_KEY_GRAPH, "bus_clk")