//
// Copyright 2016 Ettus Research
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "dsp_core_utils.hpp"
#include
#include
#include
#include
#include
#include
using namespace uhd::rfnoc;
// TODO move this to a central location
template T ceil_log2(T num){
return std::ceil(std::log(num)/std::log(T(2)));
}
// TODO remove this once we have actual lambdas
static double lambda_forward_prop(uhd::property_tree::sptr tree, uhd::fs_path prop, double value)
{
return tree->access(prop).set(value).get();
}
static double lambda_forward_prop(uhd::property_tree::sptr tree, uhd::fs_path prop)
{
return tree->access(prop).get();
}
class ddc_block_ctrl_impl : public ddc_block_ctrl
{
public:
static const size_t NUM_HALFBANDS = 3;
static const size_t CIC_MAX_DECIM = 255;
UHD_RFNOC_BLOCK_CONSTRUCTOR(ddc_block_ctrl)
{
// Argument/prop tree hooks
for (size_t chan = 0; chan < get_input_ports().size(); chan++) {
double default_freq = get_arg("freq", chan);
_tree->access(get_arg_path("freq/value", chan))
.set_coercer(boost::bind(&ddc_block_ctrl_impl::set_freq, this, _1, chan))
.set(default_freq);
;
double default_output_rate = get_arg("output_rate", chan);
_tree->access(get_arg_path("output_rate/value", chan))
.set_coercer(boost::bind(&ddc_block_ctrl_impl::set_output_rate, this, _1, chan))
.set(default_output_rate)
;
_tree->access(get_arg_path("input_rate/value", chan))
.add_coerced_subscriber(boost::bind(&ddc_block_ctrl_impl::set_input_rate, this, _1, chan))
;
// Legacy properties (for backward compat w/ multi_usrp)
const uhd::fs_path dsp_base_path = _root_path / "legacy_api" / chan;
// Legacy properties
_tree->create(dsp_base_path / "rate/value")
.set_coercer(boost::bind(&lambda_forward_prop, _tree, get_arg_path("output_rate/value", chan), _1))
.set_publisher(boost::bind(&lambda_forward_prop, _tree, get_arg_path("output_rate/value", chan)))
;
_tree->create(dsp_base_path / "rate/range")
.set_publisher(boost::bind(&ddc_block_ctrl_impl::get_output_rates, this))
;
_tree->create(dsp_base_path / "freq/value")
.set_coercer(boost::bind(&lambda_forward_prop, _tree, get_arg_path("freq/value", chan), _1))
.set_publisher(boost::bind(&lambda_forward_prop, _tree, get_arg_path("freq/value", chan)))
;
_tree->create(dsp_base_path / "freq/range")
.set_publisher(boost::bind(&ddc_block_ctrl_impl::get_freq_range, this))
;
_tree->access("time/cmd")
.add_coerced_subscriber(boost::bind(&block_ctrl_base::set_command_time, this, _1, chan))
;
if (_tree->exists("tick_rate")) {
const double tick_rate = _tree->access("tick_rate").get();
set_command_tick_rate(tick_rate, chan);
_tree->access("tick_rate")
.add_coerced_subscriber(boost::bind(&block_ctrl_base::set_command_tick_rate, this, _1, chan))
;
}
// Rate 1:1 by default
sr_write("N", 1, chan);
sr_write("M", 1, chan);
sr_write("CONFIG", 1, chan); // Enable clear EOB
}
} // end ctor
virtual ~ddc_block_ctrl_impl() {};
double get_output_scale_factor(size_t port=ANY_PORT)
{
port = port == ANY_PORT ? 0 : port;
if (not (_rx_streamer_active.count(port) and _rx_streamer_active.at(port))) {
return SCALE_UNDEFINED;
}
return get_arg("scalar_correction", port);
}
double get_input_samp_rate(size_t port=ANY_PORT)
{
port = port == ANY_PORT ? 0 : port;
if (not (_tx_streamer_active.count(port) and _tx_streamer_active.at(port))) {
return RATE_UNDEFINED;
}
return get_arg("input_rate", port);
}
double get_output_samp_rate(size_t port=ANY_PORT)
{
port = port == ANY_PORT ? 0 : port;
if (not (_rx_streamer_active.count(port) and _rx_streamer_active.at(port))) {
return RATE_UNDEFINED;
}
return get_arg("output_rate", port);
}
void issue_stream_cmd(
const uhd::stream_cmd_t &stream_cmd_,
const size_t chan
) {
UHD_RFNOC_BLOCK_TRACE() << "ddc_block_ctrl_base::issue_stream_cmd()" << std::endl;
if (list_upstream_nodes().count(chan) == 0) {
UHD_MSG(status) << "No upstream blocks." << std::endl;
return;
}
uhd::stream_cmd_t stream_cmd = stream_cmd_;
if (stream_cmd.stream_mode == uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE or
stream_cmd.stream_mode == uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_MORE) {
size_t decimation = get_arg("input_rate", chan) / get_arg("output_rate", chan);
stream_cmd.num_samps *= decimation;
}
source_node_ctrl::sptr this_upstream_block_ctrl =
boost::dynamic_pointer_cast(list_upstream_nodes().at(chan).lock());
if (this_upstream_block_ctrl) {
this_upstream_block_ctrl->issue_stream_cmd(
stream_cmd,
get_upstream_port(chan)
);
}
}
private:
//! Set the CORDIC frequency shift the signal to \p requested_freq
double set_freq(const double requested_freq, const size_t chan)
{
const double input_rate = get_arg("input_rate");
double actual_freq;
int32_t freq_word;
get_freq_and_freq_word(requested_freq, input_rate, actual_freq, freq_word);
sr_write("CORDIC_FREQ", uint32_t(freq_word), chan);
return actual_freq;
}
//! Return a range of valid frequencies the CORDIC can tune to
uhd::meta_range_t get_freq_range(void)
{
const double input_rate = get_arg("input_rate");
return uhd::meta_range_t(
-input_rate/2,
+input_rate/2,
input_rate/std::pow(2.0, 32)
);
}
// FIXME this misses a whole bunch of valid rates. Anything with CIC decim <= 255
// is OK.
uhd::meta_range_t get_output_rates(void)
{
uhd::meta_range_t range;
const double input_rate = get_arg("input_rate");
for (int decim = 1024; decim > 512; decim -= 8){
range.push_back(uhd::range_t(input_rate/decim));
}
for (int decim = 512; decim > 256; decim -= 4){
range.push_back(uhd::range_t(input_rate/decim));
}
for (int decim = 256; decim > 128; decim -= 2){
range.push_back(uhd::range_t(input_rate/decim));
}
for (int decim = 128; decim >= 1; decim -= 1){
range.push_back(uhd::range_t(input_rate/decim));
}
return range;
}
double set_output_rate(const int requested_rate, const size_t chan)
{
const double input_rate = get_arg("input_rate");
const size_t decim_rate = boost::math::iround(input_rate/this->get_output_rates().clip(requested_rate, true));
size_t decim = decim_rate;
// The FPGA knows which halfbands to enable for any given value of hb_enable.
uint32_t hb_enable = 0;
while ((decim % 2 == 0) and hb_enable < NUM_HALFBANDS) {
hb_enable++;
decim /= 2;
}
UHD_ASSERT_THROW(hb_enable <= NUM_HALFBANDS);
UHD_ASSERT_THROW(decim <= CIC_MAX_DECIM);
// What we can't cover with halfbands, we do with the CIC
sr_write("DECIM_WORD", (hb_enable << 8) | (decim & 0xff), chan);
// Rate change = M/N
sr_write("N", std::pow(2.0, double(hb_enable)) * (decim & 0xff), chan);
sr_write("M", 1, chan);
if (decim > 1 and hb_enable == 0) {
UHD_MSG(warning) << boost::format(
"The requested decimation is odd; the user should expect passband CIC rolloff.\n"
"Select an even decimation to ensure that a halfband filter is enabled.\n"
"Decimations factorable by 4 will enable 2 halfbands, those factorable by 8 will enable 3 halfbands.\n"
"decimation = dsp_rate/samp_rate -> %d = (%f MHz)/(%f MHz)\n"
) % decim_rate % (input_rate/1e6) % (requested_rate/1e6);
}
// Caclulate algorithmic gain of CIC for a given decimation.
// For Ettus CIC R=decim, M=1, N=4. Gain = (R * M) ^ N
const double rate_pow = std::pow(double(decim & 0xff), 4);
// Calculate compensation gain values for algorithmic gain of CORDIC and CIC taking into account
// gain compensation blocks already hardcoded in place in DDC (that provide simple 1/2^n gain compensation).
// CORDIC algorithmic gain limits asymptotically around 1.647 after many iterations.
static const double CORDIC_GAIN = 1.648;
//
// The polar rotation of [I,Q] = [1,1] by Pi/8 also yields max magnitude of SQRT(2) (~1.4142) however
// input to the CORDIC thats outside the unit circle can only be sourced from a saturated RF frontend.
// To provide additional dynamic range head room accordingly using scale factor applied at egress from DDC would
// cost us small signal performance, thus we do no provide compensation gain for a saturated front end and allow
// the signal to clip in the H/W as needed. If we wished to avoid the signal clipping in these circumstances then adjust code to read:
// _scaling_adjustment = std::pow(2, ceil_log2(rate_pow))/(CORDIC_GAIN*rate_pow*1.415);
const double scaling_adjustment = std::pow(2, ceil_log2(rate_pow))/(CORDIC_GAIN*rate_pow);
update_scalar(scaling_adjustment, chan);
return input_rate/decim_rate;
}
//! Set frequency and decimation again
void set_input_rate(const double /* rate */, const size_t chan)
{
const double desired_freq = _tree->access(get_arg_path("freq", chan) / "value").get_desired();
set_arg("freq", desired_freq, chan);
const double desired_output_rate = _tree->access(get_arg_path("output_rate", chan) / "value").get_desired();
set_arg("output_rate", desired_output_rate, chan);
}
// Calculate compensation gain values for algorithmic gain of CORDIC and CIC taking into account
// gain compensation blocks already hardcoded in place in DDC (that provide simple 1/2^n gain compensation).
// Further more factor in OTW format which adds further gain factor to weight output samples correctly.
void update_scalar(const double scalar, const size_t chan)
{
const double target_scalar = (1 << 15) * scalar;
const int32_t actual_scalar = boost::math::iround(target_scalar);
// Calculate the error introduced by using integer representation for the scalar, can be corrected in host later.
const double scalar_correction =
target_scalar / actual_scalar / double(1 << 15) // Rounding error, normalized to 1.0
* get_arg("fullscale"); // Scaling requested by host
set_arg("scalar_correction", scalar_correction, chan);
// Write DDC with scaling correction for CIC and CORDIC that maximizes dynamic range in 32/16/12/8bits.
sr_write("SCALE_IQ", actual_scalar, chan);
}
};
UHD_RFNOC_BLOCK_REGISTER(ddc_block_ctrl, "DDC");