// // Copyright 2019 Ettus Research, a National Instruments Brand // // SPDX-License-Identifier: GPL-3.0-or-later // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace { constexpr double DEFAULT_SCALING = 1.0; constexpr int DEFAULT_DECIM = 1; constexpr double DEFAULT_FREQ = 0.0; const uhd::rfnoc::io_type_t DEFAULT_TYPE = uhd::rfnoc::IO_TYPE_SC16; //! Space (in bytes) between register banks per channel constexpr uint32_t REG_CHAN_OFFSET = 2048; } // namespace using namespace uhd::rfnoc; const uint16_t ddc_block_control::MINOR_COMPAT = 0; const uint16_t ddc_block_control::MAJOR_COMPAT = 0; const uint32_t ddc_block_control::RB_COMPAT_NUM = 0; // read this first const uint32_t ddc_block_control::RB_NUM_HB = 8; const uint32_t ddc_block_control::RB_CIC_MAX_DECIM = 16; const uint32_t ddc_block_control::SR_N_ADDR = 128 * 8; const uint32_t ddc_block_control::SR_M_ADDR = 129 * 8; const uint32_t ddc_block_control::SR_CONFIG_ADDR = 130 * 8; const uint32_t ddc_block_control::SR_FREQ_ADDR = 132 * 8; const uint32_t ddc_block_control::SR_SCALE_IQ_ADDR = 133 * 8; const uint32_t ddc_block_control::SR_DECIM_ADDR = 134 * 8; const uint32_t ddc_block_control::SR_MUX_ADDR = 135 * 8; const uint32_t ddc_block_control::SR_COEFFS_ADDR = 136 * 8; class ddc_block_control_impl : public ddc_block_control { public: RFNOC_BLOCK_CONSTRUCTOR(ddc_block_control) , _ddc_reg_iface(*this, 0, REG_CHAN_OFFSET), _fpga_compat(regs().peek32(RB_COMPAT_NUM)), _num_halfbands(regs().peek32(RB_NUM_HB)), _cic_max_decim(regs().peek32(RB_CIC_MAX_DECIM)), _residual_scaling(get_num_input_ports(), DEFAULT_SCALING) { UHD_ASSERT_THROW(get_num_input_ports() == get_num_output_ports()); UHD_ASSERT_THROW(_cic_max_decim > 0 && _cic_max_decim <= 0xFF); uhd::assert_fpga_compat(MAJOR_COMPAT, MINOR_COMPAT, _fpga_compat, get_unique_id(), get_unique_id(), false /* Let it slide if minors mismatch */ ); RFNOC_LOG_DEBUG("Loading DDC with " << _num_halfbands << " halfbands and " "max CIC decimation " << _cic_max_decim); set_mtu_forwarding_policy(forwarding_policy_t::ONE_TO_ONE); // Load list of valid decimation values std::set decims{1}; // 1 is always a valid decimation for (size_t hb = 0; hb < _num_halfbands; hb++) { for (size_t cic_decim = 1; cic_decim <= _cic_max_decim; cic_decim++) { decims.insert((1 << hb) * cic_decim); } } for (size_t decim : decims) { _valid_decims.push_back(uhd::range_t(double(decim))); } // Initialize properties. It is very important to first reserve the // space, because we use push_back() further down, and properties must // not change their base address after registration and resolver // creation. _samp_rate_in.reserve(get_num_ports()); _samp_rate_out.reserve(get_num_ports()); _scaling_in.reserve(get_num_ports()); _scaling_out.reserve(get_num_ports()); _decim.reserve(get_num_ports()); _freq.reserve(get_num_ports()); _type_in.reserve(get_num_ports()); _type_out.reserve(get_num_ports()); for (size_t chan = 0; chan < get_num_ports(); chan++) { _register_props(chan); } register_issue_stream_cmd(); } double set_freq(const double freq, const size_t chan, const boost::optional time) { // Store the current command time so we can restore it later auto prev_cmd_time = get_command_time(chan); if (time) { set_command_time(time.get(), chan); } // This will trigger property propagation: set_property("freq", freq, chan); set_command_time(prev_cmd_time, chan); return get_freq(chan); } double get_freq(const size_t chan) const { return _freq.at(chan).get(); } uhd::freq_range_t get_frequency_range(const size_t chan) const { const double input_rate = _samp_rate_in.at(chan).is_valid() ? _samp_rate_in.at(chan).get() : 1.0; // TODO add steps return uhd::freq_range_t(-input_rate / 2, input_rate / 2); } double get_input_rate(const size_t chan) const { return _samp_rate_in.at(chan).is_valid() ? _samp_rate_in.at(chan).get() : 1.0; } void set_input_rate(const double rate, const size_t chan) { set_property("samp_rate", rate, {res_source_info::INPUT_EDGE, chan}); } double get_output_rate(const size_t chan) const { return _samp_rate_out.at(chan).is_valid() ? _samp_rate_out.at(chan).get() : 1.0; } uhd::meta_range_t get_output_rates(const size_t chan) const { uhd::meta_range_t result; if (!_samp_rate_in.at(chan).is_valid()) { result.push_back(uhd::range_t(1.0)); return result; } const double input_rate = _samp_rate_in.at(chan).get(); // The decimations are stored in order (from smallest to biggest), so // iterate in reverse order so we can add rates from smallest to biggest for (auto it = _valid_decims.rbegin(); it != _valid_decims.rend(); ++it) { result.push_back(uhd::range_t(input_rate / it->start())); } return result; } double set_output_rate(const double rate, const size_t chan) { if (_samp_rate_in.at(chan).is_valid()) { const int coerced_decim = coerce_decim(get_input_rate(chan) / rate); set_property("decim", coerced_decim, chan); } else { RFNOC_LOG_DEBUG("Property samp_rate@" << chan << " is not valid, attempting to set output rate " << (rate / 1e6) << " Msps via the edge property."); set_property("samp_rate", rate, {res_source_info::OUTPUT_EDGE, chan}); } return _samp_rate_out.at(chan).get(); } // Somewhat counter-intuitively, we post a stream command as a message to // ourselves. That's because it's easier to re-use the message handler than // it is to reuse the issue_stream_cmd() API call, because this API call // will always be forwarded to the upstream block, whereas the message // handler goes both ways. // This way, calling issue_stream_cmd() is the same as posting a message to // our output port. void issue_stream_cmd(const uhd::stream_cmd_t& stream_cmd, const size_t port) { RFNOC_LOG_TRACE("issue_stream_cmd(stream_mode=" << char(stream_cmd.stream_mode) << ", port=" << port); res_source_info dst_edge{res_source_info::OUTPUT_EDGE, port}; auto new_action = stream_cmd_action_info::make(stream_cmd.stream_mode); new_action->stream_cmd = stream_cmd; issue_stream_cmd_action_handler(dst_edge, new_action); } protected: //! Block-specific register interface multichan_register_iface _ddc_reg_iface; private: //! Shorthand for num ports, since num input ports always equals num output ports inline size_t get_num_ports() { return get_num_input_ports(); } /************************************************************************** * Initialization *************************************************************************/ void _register_props(const size_t chan) { // Create actual properties and store them _samp_rate_in.push_back( property_t(PROP_KEY_SAMP_RATE, {res_source_info::INPUT_EDGE, chan})); _samp_rate_out.push_back( property_t(PROP_KEY_SAMP_RATE, {res_source_info::OUTPUT_EDGE, chan})); _scaling_in.push_back( property_t(PROP_KEY_SCALING, {res_source_info::INPUT_EDGE, chan})); _scaling_out.push_back( property_t(PROP_KEY_SCALING, {res_source_info::OUTPUT_EDGE, chan})); _decim.push_back(property_t( PROP_KEY_DECIM, DEFAULT_DECIM, {res_source_info::USER, chan})); _freq.push_back(property_t( PROP_KEY_FREQ, DEFAULT_FREQ, {res_source_info::USER, chan})); _type_in.emplace_back(property_t( PROP_KEY_TYPE, IO_TYPE_SC16, {res_source_info::INPUT_EDGE, chan})); _type_out.emplace_back(property_t( PROP_KEY_TYPE, IO_TYPE_SC16, {res_source_info::OUTPUT_EDGE, chan})); UHD_ASSERT_THROW(_samp_rate_in.size() == chan + 1); UHD_ASSERT_THROW(_samp_rate_out.size() == chan + 1); UHD_ASSERT_THROW(_scaling_in.size() == chan + 1); UHD_ASSERT_THROW(_scaling_out.size() == chan + 1); UHD_ASSERT_THROW(_decim.size() == chan + 1); UHD_ASSERT_THROW(_freq.size() == chan + 1); UHD_ASSERT_THROW(_type_in.size() == chan + 1); UHD_ASSERT_THROW(_type_out.size() == chan + 1); // give us some shorthands for the rest of this function property_t* samp_rate_in = &_samp_rate_in.back(); property_t* samp_rate_out = &_samp_rate_out.back(); property_t* scaling_in = &_scaling_in.back(); property_t* scaling_out = &_scaling_out.back(); property_t* decim = &_decim.back(); property_t* freq = &_freq.back(); property_t* type_in = &_type_in.back(); property_t* type_out = &_type_out.back(); // register them register_property(samp_rate_in); register_property(samp_rate_out); register_property(scaling_in); register_property(scaling_out); register_property(decim); register_property(freq); register_property(type_in); register_property(type_out); /********************************************************************** * Add resolvers *********************************************************************/ // Resolver for _decim: this gets executed when the user directly // modifies _decim. the desired behaviour is to coerce it first, then // keep the input rate constant, and re-calculate the output rate. add_property_resolver({decim}, {decim, samp_rate_out, samp_rate_in, scaling_in}, [this, chan, &decim = *decim, &samp_rate_out = *samp_rate_out, &samp_rate_in = *samp_rate_in, &scaling_in = *scaling_in]() { RFNOC_LOG_TRACE("Calling resolver for `decim'@" << chan); decim = coerce_decim(double(decim.get())); if (decim.is_dirty()) { set_decim(decim.get(), chan); } if (samp_rate_in.is_valid()) { samp_rate_out = samp_rate_in.get() / decim.get(); } else if (samp_rate_out.is_valid()) { samp_rate_in = samp_rate_out.get() * decim.get(); } if (scaling_in.is_valid()) { scaling_in.force_dirty(); } }); // Resolver for _freq: this gets executed when the user directly // modifies _freq. add_property_resolver( {freq}, {freq}, [this, chan, &samp_rate_in = *samp_rate_in, &freq = *freq]() { RFNOC_LOG_TRACE("Calling resolver for `freq'@" << chan); if (samp_rate_in.is_valid()) { const double new_freq = _set_freq(freq.get(), samp_rate_in.get(), chan); // If the frequency we just set is sufficiently close to the old // frequency, don't bother updating the property in software if (!uhd::math::frequencies_are_equal(new_freq, freq.get())) { freq = new_freq; } } else { RFNOC_LOG_DEBUG("Not setting frequency until sampling rate is set."); } }); // Resolver for the input rate: // If this is called, then most likely, the input sampling rate was set. // In that case, we try and keep the output sampling rate as it was, and // modify decim to match the input/output ratio. If we can't exactly hit // the previous output rate, then we coerce the desired decim to a valid // decim value, and update the output rate. // Note: This means that if the user set decim explicitly, then this // resolver can undo the user's intentions. However, it is the option // that retains the consistency of the graph as much as possible, and // allows the user to call set_output_rate() on this block before the // graph was committed. // // The scaling is modified in the same resolver to avoid circular // dependencies. Note that changing the decimation will change the // scaling ratio (input to output scaling), so we need to write to the // decimation register in this resolver as well as the decim resolver // in order to make sure that _residual_scaling is correctly set. // Otherwise, the decim resolver and this resolver would conflict each // other when writing to scaling_out. // // This resolver may affect the frequency: If the input sampling rate // was changed, then the phase accumulator increment needs to be // recalculated in order to retain the current value of the frequency // offset, which is given in Hz (not in radians). add_property_resolver({samp_rate_in, scaling_in}, {decim, samp_rate_out, freq, scaling_out}, [this, chan, &decim = *decim, &freq = *freq, &samp_rate_out = *samp_rate_out, &samp_rate_in = *samp_rate_in, &scaling_in = *scaling_in, &scaling_out = *scaling_out]() { RFNOC_LOG_TRACE( "Calling resolver for `samp_rate_in/scaling_in'@" << chan); if (samp_rate_in.is_valid()) { RFNOC_LOG_TRACE("New samp_rate_in is " << samp_rate_in.get()); if (samp_rate_out.is_valid()) { decim = coerce_decim(samp_rate_in.get() / samp_rate_out.get()); set_decim(decim.get(), chan); const double new_samp_rate_out = samp_rate_in.get() / decim.get(); // Only update the samp_rate_out if the new value is not the same // frequency. However, we still want to call the operator= to make // sure metadata gets handled samp_rate_out = (uhd::math::frequencies_are_equal( samp_rate_out, new_samp_rate_out)) ? samp_rate_out.get() : new_samp_rate_out; RFNOC_LOG_TRACE("New samp_rate_out is " << samp_rate_out.get()); } else if (decim.is_valid()) { samp_rate_out = samp_rate_in.get() / decim.get(); } // If the input rate changes, we need to update the DDS, too, // since it works on frequencies normalized by the input rate. freq.force_dirty(); } if (scaling_in.is_valid()) { scaling_out = scaling_in.get() * _residual_scaling.at(chan); } }); // Resolver for the output rate: like the previous one, but flipped. add_property_resolver({samp_rate_out, scaling_out}, {decim, samp_rate_in, scaling_out}, [this, chan, &decim = *decim, &samp_rate_out = *samp_rate_out, &samp_rate_in = *samp_rate_in, &scaling_in = *scaling_in, &scaling_out = *scaling_out]() { RFNOC_LOG_TRACE( "Calling resolver for `samp_rate_out/scaling_out'@" << chan); if (samp_rate_out.is_valid()) { if (samp_rate_in.is_valid()) { decim = coerce_decim(samp_rate_in.get() / samp_rate_out.get()); set_decim(decim.get(), chan); } // If decim is dirty, it will trigger the decim resolver. // However, the decim resolver will set the output rate based // on the input rate, so we need to force the input rate first. if (decim.is_dirty()) { const double new_samp_rate_in = samp_rate_out.get() * decim.get(); // Only update the samp_rate_in if the new value is not the same // frequency. However, we still want to call the operator= to make // sure metadata gets handled if (samp_rate_in.is_valid()) { samp_rate_in = (uhd::math::frequencies_are_equal( samp_rate_in, new_samp_rate_in)) ? samp_rate_in.get() : new_samp_rate_in; } else { samp_rate_in = new_samp_rate_in; } RFNOC_LOG_TRACE("New samp_rate_in is " << samp_rate_in.get()); } } if (scaling_in.is_valid()) { scaling_out = scaling_in.get() * _residual_scaling.at(chan); } }); // Resolvers for type: These are constants add_property_resolver({type_in}, {type_in}, [& type_in = *type_in]() { type_in.set(IO_TYPE_SC16); }); add_property_resolver({type_out}, {type_out}, [& type_out = *type_out]() { type_out.set(IO_TYPE_SC16); }); } void register_issue_stream_cmd() { register_action_handler(ACTION_KEY_STREAM_CMD, [this](const res_source_info& src, action_info::sptr action) { stream_cmd_action_info::sptr stream_cmd_action = std::dynamic_pointer_cast(action); if (!stream_cmd_action) { throw uhd::runtime_error( "Received stream_cmd of invalid action type!"); } issue_stream_cmd_action_handler(src, stream_cmd_action); }); } void issue_stream_cmd_action_handler( const res_source_info& src, stream_cmd_action_info::sptr stream_cmd_action) { res_source_info dst_edge{res_source_info::invert_edge(src.type), src.instance}; const size_t chan = src.instance; uhd::stream_cmd_t::stream_mode_t stream_mode = stream_cmd_action->stream_cmd.stream_mode; RFNOC_LOG_TRACE("Received stream command: " << char(stream_mode) << " to " << src.to_string() << ", id==" << stream_cmd_action->id); auto new_action = stream_cmd_action_info::make(stream_mode); new_action->stream_cmd = stream_cmd_action->stream_cmd; if (stream_mode == uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE || stream_mode == uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_MORE) { if (src.type == res_source_info::OUTPUT_EDGE) { new_action->stream_cmd.num_samps *= _decim.at(chan).get(); } else { new_action->stream_cmd.num_samps /= _decim.at(chan).get(); } RFNOC_LOG_TRACE("Forwarding num_samps stream command, new value is " << new_action->stream_cmd.num_samps); } else { RFNOC_LOG_TRACE("Forwarding continuous stream command...") } post_action(dst_edge, new_action); } /************************************************************************** * FPGA communication (register IO) *************************************************************************/ /*! Update the decimation value * * \param decim The new decimation value. It must be valid decimation value. * \throws uhd::assertion_error if decim is not valid. */ void set_decim(int decim, const size_t chan) { RFNOC_LOG_TRACE("Set decim to " << decim); // Step 1: Calculate number of halfbands uint32_t hb_enable = 0; uint32_t cic_decim = decim; while ((cic_decim % 2 == 0) and hb_enable < _num_halfbands) { hb_enable++; cic_decim /= 2; } // Step 2: Make sure we can handle the rest with the CIC UHD_ASSERT_THROW(hb_enable <= _num_halfbands); UHD_ASSERT_THROW(cic_decim > 0 and cic_decim <= _cic_max_decim); const uint32_t decim_word = (hb_enable << 8) | cic_decim; _ddc_reg_iface.poke32(SR_DECIM_ADDR, decim_word, chan); // Rate change = M/N _ddc_reg_iface.poke32(SR_N_ADDR, decim, chan); // FIXME: // - eiscat DDC had a real mode, where M needed to be 2 // - TwinRX had some issues with M == 1 _ddc_reg_iface.poke32(SR_M_ADDR, 1, chan); if (cic_decim > 1 and hb_enable == 0) { RFNOC_LOG_WARNING( "The requested decimation is odd; the user should expect passband " "CIC rolloff.\n" "Select an even decimation to ensure that a halfband filter is " "enabled.\n" "Decimations factorable by 4 will enable 2 halfbands, those " "factorable by 8 will enable 3 halfbands.\n" "decimation = dsp_rate/samp_rate -> " << decim); } constexpr double DDS_GAIN = 2.0; // Calculate algorithmic gain of CIC for a given decimation. // For Ettus CIC R=decim, M=1, N=4. Gain = (R * M) ^ N // The Ettus CIC also tries its best to compensate for the gain by // shifting the CIC output. This reduces the gain by a factor of // 2**ceil(log2(cic_gain)) const double cic_gain = std::pow(double(cic_decim * 1), 4); // DDS gain: const double total_gain = DDS_GAIN * cic_gain / std::pow(2, uhd::math::ceil_log2(cic_gain)); update_scaling(total_gain, chan); } //! Update scaling based on the current gain // // Calculates the closest fixpoint value that this block can correct for in // hardware (fixpoint). The residual gain is written to _residual_scaling. void update_scaling(const double dsp_gain, const size_t chan) { constexpr double FIXPOINT_SCALING = 1 << 15; const double compensation_factor = 1. / dsp_gain; // Convert to fixpoint const double target_factor = FIXPOINT_SCALING * compensation_factor; const int32_t actual_factor = boost::math::iround(target_factor); // Write DDC with scaling correction for CIC and DDS that maximizes // dynamic range _ddc_reg_iface.poke32(SR_SCALE_IQ_ADDR, actual_factor, chan); // Calculate the error introduced by using fixedpoint representation for // the scaler, can be corrected in host later. _residual_scaling[chan] = dsp_gain * double(actual_factor) / FIXPOINT_SCALING; } /*! Return the closest possible decimation value to the one requested */ int coerce_decim(const double requested_decim) const { UHD_ASSERT_THROW(requested_decim >= 0); return static_cast(_valid_decims.clip(requested_decim, true)); } //! Set the DDS frequency shift the signal to \p requested_freq double _set_freq( const double requested_freq, const double input_rate, const size_t chan) { double actual_freq; int32_t freq_word; std::tie(actual_freq, freq_word) = get_freq_and_freq_word(requested_freq, input_rate); _ddc_reg_iface.poke32( SR_FREQ_ADDR, uint32_t(freq_word), chan, get_command_time(chan)); return actual_freq; } /************************************************************************** * Attributes *************************************************************************/ //! Block compat number const uint32_t _fpga_compat; //! Number of halfbands const size_t _num_halfbands; //! Max CIC decim const size_t _cic_max_decim; //! List of valid decimation values uhd::meta_range_t _valid_decims; //! Cache the current residual scaling std::vector _residual_scaling; //! Properties for type_in (one per port) std::vector> _type_in; //! Properties for type_out (one per port) std::vector> _type_out; //! Properties for samp_rate_in (one per port) std::vector> _samp_rate_in; //! Properties for samp_rate_out (one per port) std::vector> _samp_rate_out; //! Properties for scaling_in (one per port) std::vector> _scaling_in; //! Properties for scaling_out (one per port) std::vector> _scaling_out; //! Properties for decim (one per port) std::vector> _decim; //! Properties for freq (one per port) std::vector> _freq; }; UHD_RFNOC_BLOCK_REGISTER_DIRECT( ddc_block_control, 0xDDC00000, "DDC", CLOCK_KEY_GRAPH, "bus_clk")