// // Copyright 2012-2016 Ettus Research LLC // // SPDX-License-Identifier: GPL-3.0 // #include "ctrl_iface.hpp" #include <uhd/exception.hpp> #include <uhd/utils/byteswap.hpp> #include <uhd/utils/safe_call.hpp> #include <uhd/transport/bounded_buffer.hpp> #include <uhd/types/sid.hpp> #include <uhd/transport/chdr.hpp> #include <uhd/rfnoc/constants.hpp> #include <boost/thread/mutex.hpp> #include <boost/thread/thread.hpp> #include <boost/format.hpp> #include <boost/bind.hpp> #include <queue> using namespace uhd; using namespace uhd::rfnoc; using namespace uhd::transport; static const double ACK_TIMEOUT = 2.0; //supposed to be worst case practical timeout static const double MASSIVE_TIMEOUT = 10.0; //for when we wait on a timed command ctrl_iface::~ctrl_iface(void){ /* NOP */ } class ctrl_iface_impl: public ctrl_iface { public: ctrl_iface_impl(const bool big_endian, uhd::transport::zero_copy_if::sptr ctrl_xport, uhd::transport::zero_copy_if::sptr resp_xport, const uint32_t sid, const std::string &name ) : _link_type(vrt::if_packet_info_t::LINK_TYPE_CHDR), _packet_type(vrt::if_packet_info_t::PACKET_TYPE_CONTEXT), _bige(big_endian), _ctrl_xport(ctrl_xport), _resp_xport(resp_xport), _sid(sid), _name(name), _seq_out(0), _timeout(ACK_TIMEOUT), _resp_queue_size(_resp_xport->get_num_recv_frames()), _rb_address(uhd::rfnoc::SR_READBACK) { UHD_ASSERT_THROW(_ctrl_xport); UHD_ASSERT_THROW(_resp_xport); while (resp_xport->get_recv_buff(0.0)) {} //flush this->set_time(uhd::time_spec_t(0.0)); this->set_tick_rate(1.0); //something possible but bogus } ~ctrl_iface_impl(void) { _timeout = ACK_TIMEOUT; //reset timeout to something small UHD_SAFE_CALL( this->peek32(0);//dummy peek with the purpose of ack'ing all packets ) } /******************************************************************* * Peek and poke 32 bit implementation ******************************************************************/ void poke32(const wb_addr_type addr, const uint32_t data) { boost::mutex::scoped_lock lock(_mutex); this->send_pkt(addr/4, data); this->wait_for_ack(false); } uint32_t peek32(const wb_addr_type addr) { boost::mutex::scoped_lock lock(_mutex); this->send_pkt(_rb_address, addr/8); const uint64_t res = this->wait_for_ack(true); const uint32_t lo = uint32_t(res & 0xffffffff); const uint32_t hi = uint32_t(res >> 32); return ((addr/4) & 0x1)? hi : lo; } uint64_t peek64(const wb_addr_type addr) { boost::mutex::scoped_lock lock(_mutex); this->send_pkt(_rb_address, addr/8); return this->wait_for_ack(true); } /******************************************************************* * Update methods for time ******************************************************************/ void set_time(const uhd::time_spec_t &time) { boost::mutex::scoped_lock lock(_mutex); _time = time; _use_time = _time != uhd::time_spec_t(0.0); if (_use_time) _timeout = MASSIVE_TIMEOUT; //permanently sets larger timeout } uhd::time_spec_t get_time(void) { boost::mutex::scoped_lock lock(_mutex); return _time; } void set_tick_rate(const double rate) { boost::mutex::scoped_lock lock(_mutex); _tick_rate = rate; } private: // This is the buffer type for response messages struct resp_buff_type { uint32_t data[8]; }; /******************************************************************* * Primary control and interaction private methods ******************************************************************/ inline void send_pkt(const uint32_t addr, const uint32_t data = 0) { managed_send_buffer::sptr buff = _ctrl_xport->get_send_buff(0.0); if (not buff) { throw uhd::runtime_error("fifo ctrl timed out getting a send buffer"); } uint32_t *pkt = buff->cast<uint32_t *>(); //load packet info vrt::if_packet_info_t packet_info; packet_info.link_type = _link_type; packet_info.packet_type = _packet_type; packet_info.num_payload_words32 = 2; packet_info.num_payload_bytes = packet_info.num_payload_words32*sizeof(uint32_t); packet_info.packet_count = _seq_out; packet_info.tsf = _time.to_ticks(_tick_rate); packet_info.sob = false; packet_info.eob = false; packet_info.sid = _sid; packet_info.has_sid = true; packet_info.has_cid = false; packet_info.has_tsi = false; packet_info.has_tsf = _use_time; packet_info.has_tlr = false; //load header if (_bige) vrt::if_hdr_pack_be(pkt, packet_info); else vrt::if_hdr_pack_le(pkt, packet_info); //load payload pkt[packet_info.num_header_words32+0] = (_bige)? uhd::htonx(addr) : uhd::htowx(addr); pkt[packet_info.num_header_words32+1] = (_bige)? uhd::htonx(data) : uhd::htowx(data); //UHD_LOGGER_INFO("RFNOC") << boost::format("0x%08x, 0x%08x\n") % addr % data; //send the buffer over the interface _outstanding_seqs.push(_seq_out); buff->commit(sizeof(uint32_t)*(packet_info.num_packet_words32)); _seq_out++;//inc seq for next call } UHD_INLINE uint64_t wait_for_ack(const bool readback) { while (readback or (_outstanding_seqs.size() >= _resp_queue_size)) { //get seq to ack from outstanding packets list UHD_ASSERT_THROW(not _outstanding_seqs.empty()); const size_t seq_to_ack = _outstanding_seqs.front(); //parse the packet vrt::if_packet_info_t packet_info; resp_buff_type resp_buff; memset(&resp_buff, 0x00, sizeof(resp_buff)); uint32_t const *pkt = NULL; managed_recv_buffer::sptr buff; buff = _resp_xport->get_recv_buff(_timeout); try { UHD_ASSERT_THROW(bool(buff)); UHD_ASSERT_THROW(buff->size() > 0); _outstanding_seqs.pop(); } catch(const std::exception &ex) { throw uhd::io_error(str(boost::format("Block ctrl (%s) no response packet - %s") % _name % ex.what())); } pkt = buff->cast<const uint32_t *>(); packet_info.num_packet_words32 = buff->size()/sizeof(uint32_t); //parse the buffer try { packet_info.link_type = _link_type; if (_bige) vrt::chdr::if_hdr_unpack_be(pkt, packet_info); else vrt::chdr::if_hdr_unpack_le(pkt, packet_info); } catch(const std::exception &ex) { UHD_LOGGER_ERROR("RFNOC") << "[" << _name << "] Block ctrl bad VITA packet: " << ex.what() ; if (buff){ UHD_LOGGER_INFO("RFNOC") << boost::format("%08X") % pkt[0] ; UHD_LOGGER_INFO("RFNOC") << boost::format("%08X") % pkt[1] ; UHD_LOGGER_INFO("RFNOC") << boost::format("%08X") % pkt[2] ; UHD_LOGGER_INFO("RFNOC") << boost::format("%08X") % pkt[3] ; } else{ UHD_LOGGER_INFO("RFNOC") << "buff is NULL" ; } } //check the buffer try { UHD_ASSERT_THROW(packet_info.has_sid); if (packet_info.sid != uint32_t((_sid >> 16) | (_sid << 16))) { throw uhd::io_error( str( boost::format("Expected SID: %s Received SID: %s") % uhd::sid_t(_sid).reversed().to_pp_string_hex() % uhd::sid_t(packet_info.sid).to_pp_string_hex() ) ); } if (packet_info.packet_count != (seq_to_ack & 0xfff)) { throw uhd::io_error( str( boost::format("Expected packet index: %d " \ "Received index: %d") % (seq_to_ack & 0xfff) % packet_info.packet_count ) ); } UHD_ASSERT_THROW(packet_info.num_payload_words32 == 2); //UHD_ASSERT_THROW(packet_info.packet_type == _packet_type); } catch(const std::exception &ex) { throw uhd::io_error(str(boost::format("Block ctrl (%s) packet parse error - %s") % _name % ex.what())); } //return the readback value if (readback and _outstanding_seqs.empty()) { const uint64_t hi = (_bige)? uhd::ntohx(pkt[packet_info.num_header_words32+0]) : uhd::wtohx(pkt[packet_info.num_header_words32+0]); const uint64_t lo = (_bige)? uhd::ntohx(pkt[packet_info.num_header_words32+1]) : uhd::wtohx(pkt[packet_info.num_header_words32+1]); return ((hi << 32) | lo); } } return 0; } const vrt::if_packet_info_t::link_type_t _link_type; const vrt::if_packet_info_t::packet_type_t _packet_type; const bool _bige; const uhd::transport::zero_copy_if::sptr _ctrl_xport; const uhd::transport::zero_copy_if::sptr _resp_xport; const uint32_t _sid; const std::string _name; boost::mutex _mutex; size_t _seq_out; uhd::time_spec_t _time; bool _use_time; double _tick_rate; double _timeout; std::queue<size_t> _outstanding_seqs; const size_t _resp_queue_size; const size_t _rb_address; }; ctrl_iface::sptr ctrl_iface::make( const bool big_endian, zero_copy_if::sptr ctrl_xport, zero_copy_if::sptr resp_xport, const uint32_t sid, const std::string &name ) { return sptr(new ctrl_iface_impl( big_endian, ctrl_xport, resp_xport, sid, name )); }