// // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // // More math, but not meant for public API #ifndef INCLUDED_UHDLIB_UTILS_MATH_HPP #define INCLUDED_UHDLIB_UTILS_MATH_HPP #include #include #include namespace uhd { namespace math { /*! log2(num), rounded up to the nearest integer. */ template T ceil_log2(T num) { return std::ceil(std::log(num) / std::log(T(2))); } /** * Function which attempts to find integer values a and b such that * a / b approximates the decimal represented by f within max_error and * b is not greater than maximum_denominator. * * If the approximation cannot achieve the desired error without exceeding * the maximum denominator, b is set to the maximum value and a is set to * the closest value. * * @param f is a positive decimal to be converted, must be between 0 and 1 * @param maximum_denominator maximum value allowed for b * @param max_error how close to f the expression a / b should be */ template std::pair rational_approximation( const double f, const IntegerType maximum_denominator, const double max_error) { static constexpr IntegerType MIN_DENOM = 1; static constexpr size_t MAX_APPROXIMATIONS = 64; UHD_ASSERT_THROW(maximum_denominator <= std::numeric_limits::max()); UHD_ASSERT_THROW(f < 1 and f >= 0); // This function uses a successive approximations formula to attempt to // find a "best" rational to use to represent a decimal. This algorithm // finds a continued fraction of up to 64 terms, or such that the last // term is less than max_error if (f < max_error) { return {0, MIN_DENOM}; } double c = f; std::vector saved_denoms = {c}; // Create the continued fraction by taking the reciprocal of the // fractional part, expressing the denominator as a mixed number, // then repeating the algorithm on the fractional part of that mixed // number until a maximum number of terms or the fractional part is // nearly zero. for (size_t i = 0; i < MAX_APPROXIMATIONS; ++i) { double x = std::floor(1.0 / c); c = (1.0 / c) - x; saved_denoms.push_back(x); if (std::abs(c) < max_error) break; } double num = 1.0; double denom = saved_denoms.back(); // Calculate a single rational which will be equivalent to the // continued fraction created earlier. Because the continued fraction // is composed of only integers, the final rational will be as well. for (auto it = saved_denoms.rbegin() + 1; it != saved_denoms.rend() - 1; ++it) { double new_denom = denom * (*it) + num; if (new_denom > maximum_denominator) { // We can't do any better than using the maximum denominator num = std::round(f * maximum_denominator); denom = maximum_denominator; break; } num = denom; denom = new_denom; } return {uhd::narrow(num), uhd::narrow(denom)}; } }} /* namespace uhd::math */ #endif /* INCLUDED_UHDLIB_UTILS_MATH_HPP */