//
// Copyright 2016 Ettus Research
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "expert_container.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef UHD_EXPERT_LOGGING
#define EX_LOG(depth, str) _log(depth, str)
#else
#define EX_LOG(depth, str)
#endif
namespace uhd { namespace experts {
typedef boost::adjacency_list<
boost::vecS, //Container used to represent the edge-list for each of the vertices.
boost::vecS, //container used to represent the vertex-list of the graph.
boost::directedS, //Directionality of graph
dag_vertex_t*, //Storage for each vertex
boost::no_property, //Storage for each edge
boost::no_property, //Storage for graph object
boost::listS //Container used to represent the edge-list for the graph.
> expert_graph_t;
typedef std::map vertex_map_t;
typedef std::list node_queue_t;
typedef boost::graph_traits::edge_iterator edge_iter;
typedef boost::graph_traits::vertex_iterator vertex_iter;
class expert_container_impl : public expert_container
{
private: //Visitor class for cycle detection algorithm
struct cycle_det_visitor : public boost::dfs_visitor<>
{
cycle_det_visitor(std::vector& back_edges):
_back_edges(back_edges) {}
template
void back_edge(Edge u, const Graph& g) {
_back_edges.push_back(
g[boost::source(u,g)]->get_name() + "->" + g[boost::target(u,g)]->get_name());
}
private: std::vector& _back_edges;
};
public:
expert_container_impl(const std::string& name):
_name(name)
{
}
~expert_container_impl()
{
clear();
}
const std::string& get_name() const
{
return _name;
}
void resolve_all(bool force = false)
{
boost::lock_guard resolve_lock(_resolve_mutex);
boost::lock_guard lock(_mutex);
EX_LOG(0, str(boost::format("resolve_all(%s)") % (force?"force":"")));
// Do a full resolve of the graph
_resolve_helper("", "", force);
}
void resolve_from(const std::string&)
{
boost::lock_guard resolve_lock(_resolve_mutex);
boost::lock_guard lock(_mutex);
EX_LOG(0, str(boost::format("resolve_from(%s)") % node_name));
// Do a full resolve of the graph
// Not optimizing the traversal using node_name to reduce experts complexity
_resolve_helper("", "", false);
}
void resolve_to(const std::string&)
{
boost::lock_guard resolve_lock(_resolve_mutex);
boost::lock_guard lock(_mutex);
EX_LOG(0, str(boost::format("resolve_to(%s)") % node_name));
// Do a full resolve of the graph
// Not optimizing the traversal using node_name to reduce experts complexity
_resolve_helper("", "", false);
}
dag_vertex_t& retrieve(const std::string& name) const
{
try {
expert_graph_t::vertex_descriptor vertex = _lookup_vertex(name);
return _get_vertex(vertex);
} catch(std::exception&) {
throw uhd::lookup_error("failed to find node " + name + " in expert graph");
}
}
const dag_vertex_t& lookup(const std::string& name) const
{
return retrieve(name);
}
const node_retriever_t& node_retriever() const
{
return *this;
}
std::string to_dot() const
{
static const std::string DATA_SHAPE("ellipse");
static const std::string WORKER_SHAPE("box");
std::string dot_str;
dot_str += "digraph uhd_experts_" + _name + " {\n rankdir=LR;\n";
// Iterate through the vertices and print them out
for (std::pair vi = boost::vertices(_expert_dag);
vi.first != vi.second;
++vi.first
) {
const dag_vertex_t& vertex = _get_vertex(*vi.first);
if (vertex.get_class() != CLASS_WORKER) {
dot_str += str(boost::format(" %d [label=\"%s\",shape=%s,xlabel=\"%s\"];\n") %
uint32_t(*vi.first) % vertex.get_name() %
DATA_SHAPE % vertex.get_dtype());
} else {
dot_str += str(boost::format(" %d [label=\"%s\",shape=%s];\n") %
uint32_t(*vi.first) % vertex.get_name() % WORKER_SHAPE);
}
}
// Iterate through the edges and print them out
for (std::pair ei = boost::edges(_expert_dag);
ei.first != ei.second;
++ei.first
) {
dot_str += str(boost::format(" %d -> %d;\n") %
uint32_t(boost::source(*(ei.first), _expert_dag)) %
uint32_t(boost::target(*(ei.first), _expert_dag)));
}
dot_str += "}\n";
return dot_str;
}
void debug_audit() const
{
#ifdef UHD_EXPERT_LOGGING
EX_LOG(0, "debug_audit()");
//Test 1: Check for cycles in graph
std::vector back_edges;
cycle_det_visitor cdet_vis(back_edges);
boost::depth_first_search(_expert_dag, boost::visitor(cdet_vis));
if (back_edges.empty()) {
EX_LOG(1, "cycle check ... PASSED");
} else {
EX_LOG(1, "cycle check ... ERROR!!!");
BOOST_FOREACH(const std::string& e, back_edges) {
EX_LOG(2, "back edge: " + e);
}
}
back_edges.clear();
//Test 2: Check data node input and output edges
std::vector data_node_issues;
BOOST_FOREACH(const vertex_map_t::value_type& v, _datanode_map) {
size_t in_count = 0, out_count = 0;
for (std::pair ei = boost::edges(_expert_dag);
ei.first != ei.second;
++ei.first
) {
if (boost::target(*(ei.first), _expert_dag) == v.second)
in_count++;
if (boost::source(*(ei.first), _expert_dag) == v.second)
out_count++;
}
bool prop_unused = false;
if (in_count > 1) {
data_node_issues.push_back(v.first + ": multiple writers (workers)");
} else if (in_count > 0) {
if (_expert_dag[v.second]->get_class() == CLASS_PROPERTY) {
data_node_issues.push_back(v.first + ": multiple writers (worker and property tree)");
}
} else {
if (_expert_dag[v.second]->get_class() != CLASS_PROPERTY) {
data_node_issues.push_back(v.first + ": unreachable (will always hold initial value)");
} else if (_expert_dag[v.second]->get_class() == CLASS_PROPERTY and not _expert_dag[v.second]->has_write_callback()) {
if (out_count > 0) {
data_node_issues.push_back(v.first + ": needs explicit resolve after write");
} else {
data_node_issues.push_back(v.first + ": unused (no readers or writers)");
prop_unused = true;
}
}
}
if (out_count < 1) {
if (_expert_dag[v.second]->get_class() != CLASS_PROPERTY) {
data_node_issues.push_back(v.first + ": unused (is not read by any worker)");
} else if (_expert_dag[v.second]->get_class() == CLASS_PROPERTY and not _expert_dag[v.second]->has_read_callback()) {
if (not prop_unused) {
data_node_issues.push_back(v.first + ": needs explicit resolve to read");
}
}
}
}
if (data_node_issues.empty()) {
EX_LOG(1, "data node check ... PASSED");
} else {
EX_LOG(1, "data node check ... WARNING!");
BOOST_FOREACH(const std::string& i, data_node_issues) {
EX_LOG(2, i);
}
}
data_node_issues.clear();
//Test 3: Check worker node input and output edges
std::vector worker_issues;
BOOST_FOREACH(const vertex_map_t::value_type& v, _worker_map) {
size_t in_count = 0, out_count = 0;
for (std::pair ei = boost::edges(_expert_dag);
ei.first != ei.second;
++ei.first
) {
if (boost::target(*(ei.first), _expert_dag) == v.second)
in_count++;
if (boost::source(*(ei.first), _expert_dag) == v.second)
out_count++;
}
if (in_count < 1) {
worker_issues.push_back(v.first + ": no inputs (will never resolve)");
}
if (out_count < 1) {
worker_issues.push_back(v.first + ": no outputs");
}
}
if (worker_issues.empty()) {
EX_LOG(1, "worker check ... PASSED");
} else {
EX_LOG(1, "worker check ... WARNING!");
BOOST_FOREACH(const std::string& i, worker_issues) {
EX_LOG(2, i);
}
}
worker_issues.clear();
#endif
}
inline boost::recursive_mutex& resolve_mutex() {
return _resolve_mutex;
}
protected:
void add_data_node(dag_vertex_t* data_node, auto_resolve_mode_t resolve_mode)
{
boost::lock_guard lock(_mutex);
//Sanity check node pointer
if (data_node == NULL) {
throw uhd::runtime_error("NULL data node passed into expert container for registration.");
}
//Sanity check the data node and ensure that it is not already in this graph
EX_LOG(0, str(boost::format("add_data_node(%s)") % data_node->get_name()));
if (data_node->get_class() == CLASS_WORKER) {
throw uhd::runtime_error("Supplied node " + data_node->get_name() + " is not a data/property node.");
delete data_node;
}
if (_datanode_map.find(data_node->get_name()) != _datanode_map.end()) {
throw uhd::runtime_error("Data node with name " + data_node->get_name() + " already exists");
delete data_node;
}
try {
//Add a vertex in this graph for the data node
expert_graph_t::vertex_descriptor gr_node = boost::add_vertex(data_node, _expert_dag);
EX_LOG(1, str(boost::format("added vertex %s") % data_node->get_name()));
_datanode_map.insert(vertex_map_t::value_type(data_node->get_name(), gr_node));
//Add resolve callbacks
if (resolve_mode == AUTO_RESOLVE_ON_WRITE or resolve_mode == AUTO_RESOLVE_ON_READ_WRITE) {
EX_LOG(2, str(boost::format("added write callback")));
data_node->set_write_callback(boost::bind(&expert_container_impl::resolve_from, this, _1));
}
if (resolve_mode == AUTO_RESOLVE_ON_READ or resolve_mode == AUTO_RESOLVE_ON_READ_WRITE) {
EX_LOG(2, str(boost::format("added read callback")));
data_node->set_read_callback(boost::bind(&expert_container_impl::resolve_to, this, _1));
}
} catch (...) {
clear();
throw uhd::assertion_error("Unknown unrecoverable error adding data node. Cleared expert container.");
}
}
void add_worker(worker_node_t* worker)
{
boost::lock_guard lock(_mutex);
//Sanity check node pointer
if (worker == NULL) {
throw uhd::runtime_error("NULL worker passed into expert container for registration.");
}
//Sanity check the data node and ensure that it is not already in this graph
EX_LOG(0, str(boost::format("add_worker(%s)") % worker->get_name()));
if (worker->get_class() != CLASS_WORKER) {
throw uhd::runtime_error("Supplied node " + worker->get_name() + " is not a worker node.");
delete worker;
}
if (_worker_map.find(worker->get_name()) != _worker_map.end()) {
throw uhd::runtime_error("Resolver with name " + worker->get_name() + " already exists.");
delete worker;
}
try {
//Add a vertex in this graph for the worker node
expert_graph_t::vertex_descriptor gr_node = boost::add_vertex(worker, _expert_dag);
EX_LOG(1, str(boost::format("added vertex %s") % worker->get_name()));
_worker_map.insert(vertex_map_t::value_type(worker->get_name(), gr_node));
//For each input, add an edge from the input to this node
BOOST_FOREACH(const std::string& node_name, worker->get_inputs()) {
vertex_map_t::const_iterator node = _datanode_map.find(node_name);
if (node != _datanode_map.end()) {
boost::add_edge((*node).second, gr_node, _expert_dag);
EX_LOG(1, str(boost::format("added edge %s->%s") % _expert_dag[(*node).second]->get_name() % _expert_dag[gr_node]->get_name()));
} else {
throw uhd::runtime_error("Data node with name " + node_name + " was not found");
}
}
//For each output, add an edge from this node to the output
BOOST_FOREACH(const std::string& node_name, worker->get_outputs()) {
vertex_map_t::const_iterator node = _datanode_map.find(node_name);
if (node != _datanode_map.end()) {
boost::add_edge(gr_node, (*node).second, _expert_dag);
EX_LOG(1, str(boost::format("added edge %s->%s") % _expert_dag[gr_node]->get_name() % _expert_dag[(*node).second]->get_name()));
} else {
throw uhd::runtime_error("Data node with name " + node_name + " was not found");
}
}
} catch (uhd::runtime_error& ex) {
clear();
//Promote runtime_error to assertion_error
throw uhd::assertion_error(std::string(ex.what()) + " (Cleared expert container because error is unrecoverable).");
} catch (...) {
clear();
throw uhd::assertion_error("Unknown unrecoverable error adding worker. Cleared expert container.");
}
}
void clear()
{
boost::lock_guard lock(_mutex);
EX_LOG(0, "clear()");
// Iterate through the vertices and release their node storage
typedef boost::graph_traits::vertex_iterator vertex_iter;
for (std::pair vi = boost::vertices(_expert_dag);
vi.first != vi.second;
++vi.first
) {
try {
delete _expert_dag[*vi.first];
_expert_dag[*vi.first] = NULL;
} catch (...) {
//If a dag_vertex is a worker, it has a virtual dtor which
//can possibly throw an exception. We will not let that
//terminate clear() and leave things in a bad state.
}
}
//The following calls will not throw because they all contain
//intrinsic types.
// Release all vertices and edges in the DAG
_expert_dag.clear();
// Release all nodes in the map
_worker_map.clear();
_datanode_map.clear();
}
private:
void _resolve_helper(std::string start, std::string stop, bool force)
{
//Sort the graph topologically. This ensures that for all dependencies, the dependant
//is always after all of its dependencies.
node_queue_t sorted_nodes;
try {
boost::topological_sort(_expert_dag, std::front_inserter(sorted_nodes));
} catch (boost::not_a_dag&) {
std::vector back_edges;
cycle_det_visitor cdet_vis(back_edges);
boost::depth_first_search(_expert_dag, boost::visitor(cdet_vis));
if (not back_edges.empty()) {
std::string edges;
BOOST_FOREACH(const std::string& e, back_edges) {
edges += "* " + e + "";
}
throw uhd::runtime_error("Cannot resolve expert because it has at least one cycle!\n"
"The following back-edges were found:" + edges);
}
}
if (sorted_nodes.empty()) return;
//Determine the start and stop node. If one is not explicitly specified then
//resolve everything
expert_graph_t::vertex_descriptor start_vertex = sorted_nodes.front();
expert_graph_t::vertex_descriptor stop_vertex = sorted_nodes.back();
if (not start.empty()) start_vertex = _lookup_vertex(start);
if (not stop.empty()) stop_vertex = _lookup_vertex(stop);
//First Pass: Resolve all nodes if they are dirty, in a topological order
std::list resolved_workers;
bool start_node_encountered = false;
for (node_queue_t::iterator node_iter = sorted_nodes.begin();
node_iter != sorted_nodes.end();
++node_iter
) {
//Determine if we are at or beyond the starting node
if (*node_iter == start_vertex) start_node_encountered = true;
//Only resolve if the starting node has passed
if (start_node_encountered) {
dag_vertex_t& node = _get_vertex(*node_iter);
std::string node_val;
if (force or node.is_dirty()) {
node.resolve();
if (node.get_class() == CLASS_WORKER) {
resolved_workers.push_back(&node);
}
EX_LOG(1, str(boost::format("resolved node %s (%s) [%s]") %
node.get_name() % (node.is_dirty()?"dirty":"clean") % node.to_string()));
} else {
EX_LOG(1, str(boost::format("skipped node %s (%s) [%s]") %
node.get_name() % (node.is_dirty()?"dirty":"clean") % node.to_string()));
}
}
//Determine if we are beyond the stop node
if (*node_iter == stop_vertex) break;
}
//Second Pass: Mark all the workers clean. The policy is that a worker will mark all of
//its dependencies clean so after this step all data nodes that are not consumed by a worker
//will remain dirty (as they should because no one has consumed their value)
for (std::list::iterator worker = resolved_workers.begin();
worker != resolved_workers.end();
++worker
) {
(*worker)->mark_clean();
}
}
expert_graph_t::vertex_descriptor _lookup_vertex(const std::string& name) const
{
expert_graph_t::vertex_descriptor vertex;
//Look for node in the data-node map
vertex_map_t::const_iterator vertex_iter = _datanode_map.find(name);
if (vertex_iter != _datanode_map.end()) {
vertex = (*vertex_iter).second;
} else {
//If not found, look in the worker-node map
vertex_iter = _worker_map.find(name);
if (vertex_iter != _worker_map.end()) {
vertex = (*vertex_iter).second;
} else {
throw uhd::lookup_error("Could not find node with name " + name);
}
}
return vertex;
}
dag_vertex_t& _get_vertex(expert_graph_t::vertex_descriptor desc) const {
//Requirement: Node must exist in expert graph
dag_vertex_t* vertex_ptr = _expert_dag[desc];
if (vertex_ptr) {
return *vertex_ptr;
} else {
throw uhd::assertion_error("Expert graph malformed. Found a NULL node.");
}
}
void _log(size_t depth, const std::string& str) const
{
std::string indents;
for (size_t i = 0; i < depth; i++) indents += "- ";
UHD_MSG(fastpath) << "[expert::" + _name + "] " << indents << str << std::endl;
}
private:
const std::string _name;
expert_graph_t _expert_dag; //The primary graph data structure as an adjacency list
vertex_map_t _worker_map; //A map from vertex name to vertex descriptor for workers
vertex_map_t _datanode_map; //A map from vertex name to vertex descriptor for data nodes
boost::mutex _mutex;
boost::recursive_mutex _resolve_mutex;
};
expert_container::sptr expert_container::make(const std::string& name)
{
return boost::make_shared(name);
}
}}