// // Copyright 2017 Ettus Research LLC // // SPDX-License-Identifier: GPL-3.0 // #include "convert_unpack_sc12.hpp" #include #include using namespace uhd::convert; /* * Shuffle Orderings - Single 128-bit SSE register * * 12-bit packed I/Q byteswapped * ----------------------- * | I0 | Q0 | I1 | 0 * |-----------------------| * | I1 | Q1 | I2 | Q2 | Input * |-----------------------| * | Q2 | I3 | Q3 | 2 * ----------------------- * 31 0 * * * 12-bit interleaved packed I/Q * --------------------------------------- * |I0|Q0|I1|Q1|I2|Q2|I3|Q3| | Byteswap Removed * --------------------------------------- * | 127 32 | 31 Empty 0 | * * * Packed Unpacked * Sample Index Index Offset * ===================================== * I0 15,14 0,1 0 * Q0 14,13 8,9 4 * I1 12,11 2,3 0 * Q1 11,10 10,11 4 12-bit Indices * I2 9,8 4,5 0 * Q2 8,7 12,13 4 * I3 6,5 6,7 0 * Q3 5,4 14,15 4 * * * 12-bit deinterleaved unpacked I/Q * --------------------------------------- * | Q3 | Q2 | Q1 | Q0 | I3 | I2 | I1 | I0 | Shuffle-1 * --------------------------------------- * | 4-bit >> offset | High bit aligned | * * * 16-bit interleaved I/Q * --------------------------------------- * | Q3 | I3 | Q2 | I2 | Q1 | I1 | Q0 | I0 | Output (Shuffle-2) * --------------------------------------- * | 127 0 | * */ #define SC12_SHIFT_MASK 0x0fff0fff, 0x0fff0fff, 0xfff0fff0, 0xfff0fff0 #define SC12_PACK_SHUFFLE1 5,4,8,7,11,10,14,13,6,5,9,8,12,11,15,14 #define SC12_PACK_SHUFFLE2 15,14,7,6,13,12,5,4,11,10,3,2,9,8,1,0 template inline void convert_sc12_item32_3_to_star_4 ( const item32_sc12_3x &input, std::complex *out, double scalar, typename std::enable_if::value>::type* = NULL ) { __m128i m0, m1, m2, m3, m4; m0 = _mm_set_epi32(SC12_SHIFT_MASK); m1 = _mm_set_epi8(SC12_PACK_SHUFFLE1); m2 = _mm_loadu_si128((__m128i*) &input); m2 = _mm_shuffle_epi32(m2, _MM_SHUFFLE(0, 1, 2, 3)); m3 = _mm_shuffle_epi8(m2, m1); m3 = _mm_and_si128(m3, m0); m4 = _mm_setzero_si128(); m1 = _mm_unpacklo_epi16(m4, m3); m2 = _mm_unpackhi_epi16(m4, m3); m2 = _mm_slli_epi32(m2, 4); m3 = _mm_unpacklo_epi32(m1, m2); m4 = _mm_unpackhi_epi32(m1, m2); __m128 m5, m6, m7; m5 = _mm_set_ps1(scalar/(1 << 16)); m6 = _mm_cvtepi32_ps(m3); m7 = _mm_cvtepi32_ps(m4); m6 = _mm_mul_ps(m6, m5); m7 = _mm_mul_ps(m7, m5); _mm_storeu_ps(reinterpret_cast(&out[0]), m6); _mm_storeu_ps(reinterpret_cast(&out[2]), m7); } template inline void convert_sc12_item32_3_to_star_4 ( const item32_sc12_3x &input, std::complex *out, double, typename std::enable_if::value>::type* = NULL ) { __m128i m0, m1, m2, m3; m0 = _mm_set_epi32(SC12_SHIFT_MASK); m1 = _mm_set_epi8(SC12_PACK_SHUFFLE1); m2 = _mm_set_epi8(SC12_PACK_SHUFFLE2); m3 = _mm_loadu_si128((__m128i*) &input); m3 = _mm_shuffle_epi32(m3, _MM_SHUFFLE(0, 1, 2, 3)); m3 = _mm_shuffle_epi8(m3, m1); m3 = _mm_and_si128(m3, m0); m0 = _mm_slli_epi16(m3, 4); m1 = _mm_shuffle_epi32(m3, _MM_SHUFFLE(1, 0, 0, 0)); m0 = _mm_unpackhi_epi64(m1, m0); m1 = _mm_shuffle_epi8(m0, m2); _mm_storeu_si128((__m128i*) out, m1); } template struct convert_sc12_item32_1_to_star_2 : public converter { convert_sc12_item32_1_to_star_2(void):_scalar(0.0) { //NOP } void set_scalar(const double scalar) { const int unpack_growth = 16; _scalar = scalar/unpack_growth; } void operator()(const input_type &inputs, const output_type &outputs, const size_t nsamps) { const size_t head_samps = size_t(inputs[0]) & 0x3; size_t rewind = 0; switch(head_samps) { case 0: break; case 1: rewind = 9; break; case 2: rewind = 6; break; case 3: rewind = 3; break; } const item32_sc12_3x *input = reinterpret_cast(size_t(inputs[0]) - rewind); std::complex *output = reinterpret_cast *>(outputs[0]); std::complex dummy; size_t i = 0, o = 0; switch (head_samps) { case 0: break; //no head case 1: convert_sc12_item32_3_to_star_4(input[i++], dummy, dummy, dummy, output[0], _scalar); break; case 2: convert_sc12_item32_3_to_star_4(input[i++], dummy, dummy, output[0], output[1], _scalar); break; case 3: convert_sc12_item32_3_to_star_4(input[i++], dummy, output[0], output[1], output[2], _scalar); break; } o += head_samps; //convert the body while (o+3 < nsamps) { convert_sc12_item32_3_to_star_4(input[i], &output[o], _scalar); i += 1; o += 4; } const size_t tail_samps = nsamps - o; switch (tail_samps) { case 0: break; //no tail case 1: convert_sc12_item32_3_to_star_4(input[i], output[o+0], dummy, dummy, dummy, _scalar); break; case 2: convert_sc12_item32_3_to_star_4(input[i], output[o+0], output[o+1], dummy, dummy, _scalar); break; case 3: convert_sc12_item32_3_to_star_4(input[i], output[o+0], output[o+1], output[o+2], dummy, _scalar); break; } } double _scalar; }; static converter::sptr make_convert_sc12_item32_le_1_to_fc32_1(void) { return converter::sptr(new convert_sc12_item32_1_to_star_2()); } static converter::sptr make_convert_sc12_item32_le_1_to_sc16_1(void) { return converter::sptr(new convert_sc12_item32_1_to_star_2()); } UHD_STATIC_BLOCK(register_sse_unpack_sc12) { uhd::convert::id_type id; id.num_inputs = 1; id.num_outputs = 1; id.output_format = "fc32"; id.input_format = "sc12_item32_le"; uhd::convert::register_converter(id, &make_convert_sc12_item32_le_1_to_fc32_1, PRIORITY_SIMD); id.output_format = "sc16"; id.input_format = "sc12_item32_le"; uhd::convert::register_converter(id, &make_convert_sc12_item32_le_1_to_sc16_1, PRIORITY_SIMD); }