//
// Copyright 2017 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include
#include "convert_pack_sc12.hpp"
/*
* Shuffle Orderings - Single 128-bit SSE register
*
* 16-bit interleaved I/Q
* ---------------------------------------
* | Q3 | I3 | Q2 | I2 | Q1 | I1 | Q0 | I0 | Input
* ---------------------------------------
* | 127 0 |
*
*
* 12-bit deinterleaved unpacked I/Q
* ---------------------------------------
* | I3 | I2 | I1 | I0 | Q3 | Q2 | Q1 | Q0 | Shuffle-1
* ---------------------------------------
* | High bit aligned | 4-bit >> offset |
*
*
* 12-bit interleaved packed I/Q
* ---------------------------------------
* |I0|Q0|I1|Q1|I2|Q2|I3|Q3| | Shuffle-2 | Shuffle-3
* ---------------------------------------
* | 127 32 | 31 Empty 0 |
*
*
* 12-bit packed I/Q byteswapped
* -----------------------
* | I0 | Q0 | I1 | 0
* |-----------------------|
* | I1 | Q1 | I2 | Q2 | Output
* |-----------------------|
* | Q2 | I3 | Q3 |
* |-----------------------|
* | Unused | 3
* -----------------------
* 31 0
*/
#define SC12_SHIFT_MASK 0xfff0fff0, 0xfff0fff0, 0x0fff0fff, 0x0fff0fff
#define SC12_PACK_SHUFFLE1 13,12,9,8,5,4,1,0,15,14,11,10,7,6,3,2
#define SC12_PACK_SHUFFLE2 9,8,0,11,10,2,13,12,4,15,14,6,0,0,0,0
#define SC12_PACK_SHUFFLE3 8,1,8,8,3,8,8,5,8,8,7,8,8,8,8,8
template
inline void convert_star_4_to_sc12_item32_3
(
const std::complex *in,
item32_sc12_3x &output,
const double scalar,
typename std::enable_if::value>::type* = NULL
)
{
__m128 m0, m1, m2;
m0 = _mm_set1_ps(scalar);
m1 = _mm_loadu_ps((const float *) &in[0]);
m2 = _mm_loadu_ps((const float *) &in[2]);
m1 = _mm_mul_ps(m1, m0);
m2 = _mm_mul_ps(m2, m0);
m0 = _mm_shuffle_ps(m1, m2, _MM_SHUFFLE(2, 0, 2, 0));
m1 = _mm_shuffle_ps(m1, m2, _MM_SHUFFLE(3, 1, 3, 1));
__m128i m3, m4, m5, m6, m7;
m3 = _mm_set_epi32(SC12_SHIFT_MASK);
m4 = _mm_set_epi8(SC12_PACK_SHUFFLE2);
m5 = _mm_set_epi8(SC12_PACK_SHUFFLE3);
m6 = _mm_cvtps_epi32(m0);
m7 = _mm_cvtps_epi32(m1);
m6 = _mm_slli_epi32(m6, 4);
m6 = _mm_packs_epi32(m7, m6);
m6 = _mm_and_si128(m6, m3);
m7 = _mm_move_epi64(m6);
m6 = _mm_shuffle_epi8(m6, m4);
m7 = _mm_shuffle_epi8(m7, m5);
m6 = _mm_or_si128(m6, m7);
m6 = _mm_shuffle_epi32(m6, _MM_SHUFFLE(0, 1, 2, 3));
_mm_storeu_si128((__m128i*) &output, m6);
}
template
static void convert_star_4_to_sc12_item32_3
(
const std::complex *in,
item32_sc12_3x &output,
const double,
typename std::enable_if::value>::type* = NULL
)
{
__m128i m0, m1, m2, m3, m4, m5;
m0 = _mm_set_epi32(SC12_SHIFT_MASK);
m1 = _mm_set_epi8(SC12_PACK_SHUFFLE1);
m2 = _mm_set_epi8(SC12_PACK_SHUFFLE2);
m3 = _mm_set_epi8(SC12_PACK_SHUFFLE3);
m4 = _mm_loadu_si128((__m128i*) in);
m4 = _mm_shuffle_epi8(m4, m1);
m5 = _mm_srli_epi16(m4, 4);
m4 = _mm_shuffle_epi32(m4, _MM_SHUFFLE(0, 0, 3, 2));
m4 = _mm_unpacklo_epi64(m5, m4);
m4 = _mm_and_si128(m4, m0);
m5 = _mm_move_epi64(m4);
m4 = _mm_shuffle_epi8(m4, m2);
m5 = _mm_shuffle_epi8(m5, m3);
m3 = _mm_or_si128(m4, m5);
m3 = _mm_shuffle_epi32(m3, _MM_SHUFFLE(0, 1, 2, 3));
_mm_storeu_si128((__m128i*) &output, m3);
}
template
struct convert_star_1_to_sc12_item32_2 : public converter
{
convert_star_1_to_sc12_item32_2(void):_scalar(0.0)
{
}
void set_scalar(const double scalar)
{
_scalar = scalar;
}
void operator()(const input_type &inputs, const output_type &outputs, const size_t nsamps)
{
const std::complex *input = reinterpret_cast *>(inputs[0]);
const size_t head_samps = size_t(outputs[0]) & 0x3;
int enable;
size_t rewind = 0;
switch(head_samps)
{
case 0: break;
case 1: rewind = 9; break;
case 2: rewind = 6; break;
case 3: rewind = 3; break;
}
item32_sc12_3x *output = reinterpret_cast(size_t(outputs[0]) - rewind);
//helper variables
size_t i = 0, o = 0;
//handle the head case
switch (head_samps)
{
case 0:
break; //no head
case 1:
enable = CONVERT12_LINE2;
convert_star_4_to_sc12_item32_3(0, 0, 0, input[0], enable, output[o++], _scalar);
break;
case 2:
enable = CONVERT12_LINE2 | CONVERT12_LINE1;
convert_star_4_to_sc12_item32_3(0, 0, input[0], input[1], enable, output[o++], _scalar);
break;
case 3:
enable = CONVERT12_LINE2 | CONVERT12_LINE1 | CONVERT12_LINE0;
convert_star_4_to_sc12_item32_3(0, input[0], input[1], input[2], enable, output[o++], _scalar);
break;
}
i += head_samps;
// SSE packed write output is 16 bytes which overwrites the 12-bit
// packed struct by 4 bytes. There is no concern if there are
// subsequent samples to be converted (writes will simply happen
// twice). So set the conversion loop to force a tail case on the
// final 4 or fewer samples.
while (i+4 < nsamps)
{
convert_star_4_to_sc12_item32_3(&input[i], output[o], _scalar);
o++; i += 4;
}
//handle the tail case
const size_t tail_samps = nsamps - i;
switch (tail_samps)
{
case 0:
break; //no tail
case 1:
enable = CONVERT12_LINE0;
convert_star_4_to_sc12_item32_3(input[i+0], 0, 0, 0, enable, output[o], _scalar);
break;
case 2:
enable = CONVERT12_LINE0 | CONVERT12_LINE1;
convert_star_4_to_sc12_item32_3(input[i+0], input[i+1], 0, 0, enable, output[o], _scalar);
break;
case 3:
enable = CONVERT12_LINE0 | CONVERT12_LINE1 | CONVERT12_LINE2;
convert_star_4_to_sc12_item32_3(input[i+0], input[i+1], input[i+2], 0, enable, output[o], _scalar);
break;
case 4:
enable = CONVERT12_LINE_ALL;
convert_star_4_to_sc12_item32_3(input[i+0], input[i+1], input[i+2], input[i+3], enable, output[o], _scalar);
break;
}
}
double _scalar;
};
static converter::sptr make_convert_fc32_1_to_sc12_item32_le_1(void)
{
return converter::sptr(new convert_star_1_to_sc12_item32_2());
}
static converter::sptr make_convert_sc16_1_to_sc12_item32_le_1(void)
{
return converter::sptr(new convert_star_1_to_sc12_item32_2());
}
UHD_STATIC_BLOCK(register_sse_pack_sc12)
{
uhd::convert::id_type id;
id.num_inputs = 1;
id.num_outputs = 1;
id.input_format = "fc32";
id.output_format = "sc12_item32_le";
uhd::convert::register_converter(id, &make_convert_fc32_1_to_sc12_item32_le_1, PRIORITY_SIMD);
id.input_format = "sc16";
id.output_format = "sc12_item32_le";
uhd::convert::register_converter(id, &make_convert_sc16_1_to_sc12_item32_le_1, PRIORITY_SIMD);
}