// // Copyright 2017 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include "convert_pack_sc12.hpp" #include /* * Shuffle Orderings - Single 128-bit SSE register * * 16-bit interleaved I/Q * --------------------------------------- * | Q3 | I3 | Q2 | I2 | Q1 | I1 | Q0 | I0 | Input * --------------------------------------- * | 127 0 | * * * 12-bit deinterleaved unpacked I/Q * --------------------------------------- * | I3 | I2 | I1 | I0 | Q3 | Q2 | Q1 | Q0 | Shuffle-1 * --------------------------------------- * | High bit aligned | 4-bit >> offset | * * * 12-bit interleaved packed I/Q * --------------------------------------- * |I0|Q0|I1|Q1|I2|Q2|I3|Q3| | Shuffle-2 | Shuffle-3 * --------------------------------------- * | 127 32 | 31 Empty 0 | * * * 12-bit packed I/Q byteswapped * ----------------------- * | I0 | Q0 | I1 | 0 * |-----------------------| * | I1 | Q1 | I2 | Q2 | Output * |-----------------------| * | Q2 | I3 | Q3 | * |-----------------------| * | Unused | 3 * ----------------------- * 31 0 */ #define SC12_SHIFT_MASK 0xfff0fff0, 0xfff0fff0, 0x0fff0fff, 0x0fff0fff #define SC12_PACK_SHUFFLE1 13, 12, 9, 8, 5, 4, 1, 0, 15, 14, 11, 10, 7, 6, 3, 2 #define SC12_PACK_SHUFFLE2 9, 8, 0, 11, 10, 2, 13, 12, 4, 15, 14, 6, 0, 0, 0, 0 #define SC12_PACK_SHUFFLE3 8, 1, 8, 8, 3, 8, 8, 5, 8, 8, 7, 8, 8, 8, 8, 8 template inline void convert_star_4_to_sc12_item32_3(const std::complex* in, item32_sc12_3x& output, const double scalar, typename std::enable_if::value>::type* = NULL) { __m128 m0, m1, m2; m0 = _mm_set1_ps(scalar); m1 = _mm_loadu_ps((const float*)&in[0]); m2 = _mm_loadu_ps((const float*)&in[2]); m1 = _mm_mul_ps(m1, m0); m2 = _mm_mul_ps(m2, m0); m0 = _mm_shuffle_ps(m1, m2, _MM_SHUFFLE(2, 0, 2, 0)); m1 = _mm_shuffle_ps(m1, m2, _MM_SHUFFLE(3, 1, 3, 1)); __m128i m3, m4, m5, m6, m7; m3 = _mm_set_epi32(SC12_SHIFT_MASK); m4 = _mm_set_epi8(SC12_PACK_SHUFFLE2); m5 = _mm_set_epi8(SC12_PACK_SHUFFLE3); m6 = _mm_cvtps_epi32(m0); m7 = _mm_cvtps_epi32(m1); m6 = _mm_slli_epi32(m6, 4); m6 = _mm_packs_epi32(m7, m6); m6 = _mm_and_si128(m6, m3); m7 = _mm_move_epi64(m6); m6 = _mm_shuffle_epi8(m6, m4); m7 = _mm_shuffle_epi8(m7, m5); m6 = _mm_or_si128(m6, m7); m6 = _mm_shuffle_epi32(m6, _MM_SHUFFLE(0, 1, 2, 3)); _mm_storeu_si128((__m128i*)&output, m6); } template static void convert_star_4_to_sc12_item32_3(const std::complex* in, item32_sc12_3x& output, const double, typename std::enable_if::value>::type* = NULL) { __m128i m0, m1, m2, m3, m4, m5; m0 = _mm_set_epi32(SC12_SHIFT_MASK); m1 = _mm_set_epi8(SC12_PACK_SHUFFLE1); m2 = _mm_set_epi8(SC12_PACK_SHUFFLE2); m3 = _mm_set_epi8(SC12_PACK_SHUFFLE3); m4 = _mm_loadu_si128((__m128i*)in); m4 = _mm_shuffle_epi8(m4, m1); m5 = _mm_srli_epi16(m4, 4); m4 = _mm_shuffle_epi32(m4, _MM_SHUFFLE(0, 0, 3, 2)); m4 = _mm_unpacklo_epi64(m5, m4); m4 = _mm_and_si128(m4, m0); m5 = _mm_move_epi64(m4); m4 = _mm_shuffle_epi8(m4, m2); m5 = _mm_shuffle_epi8(m5, m3); m3 = _mm_or_si128(m4, m5); m3 = _mm_shuffle_epi32(m3, _MM_SHUFFLE(0, 1, 2, 3)); _mm_storeu_si128((__m128i*)&output, m3); } template struct convert_star_1_to_sc12_item32_2 : public converter { convert_star_1_to_sc12_item32_2(void) : _scalar(0.0) {} void set_scalar(const double scalar) { _scalar = scalar; } void operator()( const input_type& inputs, const output_type& outputs, const size_t nsamps) { const std::complex* input = reinterpret_cast*>(inputs[0]); const size_t head_samps = size_t(outputs[0]) & 0x3; int enable; size_t rewind = 0; switch (head_samps) { case 0: break; case 1: rewind = 9; break; case 2: rewind = 6; break; case 3: rewind = 3; break; } item32_sc12_3x* output = reinterpret_cast(size_t(outputs[0]) - rewind); // helper variables size_t i = 0, o = 0; // handle the head case switch (head_samps) { case 0: break; // no head case 1: enable = CONVERT12_LINE2; convert_star_4_to_sc12_item32_3( 0, 0, 0, input[0], enable, output[o++], _scalar); break; case 2: enable = CONVERT12_LINE2 | CONVERT12_LINE1; convert_star_4_to_sc12_item32_3( 0, 0, input[0], input[1], enable, output[o++], _scalar); break; case 3: enable = CONVERT12_LINE2 | CONVERT12_LINE1 | CONVERT12_LINE0; convert_star_4_to_sc12_item32_3( 0, input[0], input[1], input[2], enable, output[o++], _scalar); break; } i += head_samps; // SSE packed write output is 16 bytes which overwrites the 12-bit // packed struct by 4 bytes. There is no concern if there are // subsequent samples to be converted (writes will simply happen // twice). So set the conversion loop to force a tail case on the // final 4 or fewer samples. while (i + 4 < nsamps) { convert_star_4_to_sc12_item32_3(&input[i], output[o], _scalar); o++; i += 4; } // handle the tail case const size_t tail_samps = nsamps - i; switch (tail_samps) { case 0: break; // no tail case 1: enable = CONVERT12_LINE0; convert_star_4_to_sc12_item32_3( input[i + 0], 0, 0, 0, enable, output[o], _scalar); break; case 2: enable = CONVERT12_LINE0 | CONVERT12_LINE1; convert_star_4_to_sc12_item32_3( input[i + 0], input[i + 1], 0, 0, enable, output[o], _scalar); break; case 3: enable = CONVERT12_LINE0 | CONVERT12_LINE1 | CONVERT12_LINE2; convert_star_4_to_sc12_item32_3(input[i + 0], input[i + 1], input[i + 2], 0, enable, output[o], _scalar); break; case 4: enable = CONVERT12_LINE_ALL; convert_star_4_to_sc12_item32_3(input[i + 0], input[i + 1], input[i + 2], input[i + 3], enable, output[o], _scalar); break; } } double _scalar; }; static converter::sptr make_convert_fc32_1_to_sc12_item32_le_1(void) { return converter::sptr(new convert_star_1_to_sc12_item32_2()); } static converter::sptr make_convert_sc16_1_to_sc12_item32_le_1(void) { return converter::sptr(new convert_star_1_to_sc12_item32_2()); } UHD_STATIC_BLOCK(register_sse_pack_sc12) { uhd::convert::id_type id; id.num_inputs = 1; id.num_outputs = 1; id.input_format = "fc32"; id.output_format = "sc12_item32_le"; uhd::convert::register_converter( id, &make_convert_fc32_1_to_sc12_item32_le_1, PRIORITY_SIMD); id.input_format = "sc16"; id.output_format = "sc12_item32_le"; uhd::convert::register_converter( id, &make_convert_sc16_1_to_sc12_item32_le_1, PRIORITY_SIMD); }