// // Copyright 2012 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // #include "convert_common.hpp" #include <uhd/utils/byteswap.hpp> #include <emmintrin.h> using namespace uhd::convert; static const __m128i zeroi = _mm_setzero_si128(); UHD_INLINE void unpack_sc32_8x( const __m128i &in, __m128d &out0, __m128d &out1, __m128d &out2, __m128d &out3, __m128d &out4, __m128d &out5, __m128d &out6, __m128d &out7, const __m128d &scalar ){ const int shuf = _MM_SHUFFLE(1, 0, 3, 2); __m128i tmp; const __m128i tmplo = _mm_unpacklo_epi8(zeroi, in); /* value in upper 8 bits */ tmp = _mm_unpacklo_epi16(zeroi, tmplo); /* value in upper 16 bits */ out0 = _mm_mul_pd(_mm_cvtepi32_pd(tmp), scalar); tmp = _mm_shuffle_epi32(tmp, shuf); out1 = _mm_mul_pd(_mm_cvtepi32_pd(tmp), scalar); tmp = _mm_unpackhi_epi16(zeroi, tmplo); out2 = _mm_mul_pd(_mm_cvtepi32_pd(tmp), scalar); tmp = _mm_shuffle_epi32(tmp, shuf); out3 = _mm_mul_pd(_mm_cvtepi32_pd(tmp), scalar); const __m128i tmphi = _mm_unpackhi_epi8(zeroi, in); tmp = _mm_unpacklo_epi16(zeroi, tmphi); out4 = _mm_mul_pd(_mm_cvtepi32_pd(tmp), scalar); tmp = _mm_shuffle_epi32(tmp, shuf); out5 = _mm_mul_pd(_mm_cvtepi32_pd(tmp), scalar); tmp = _mm_unpackhi_epi16(zeroi, tmphi); out6 = _mm_mul_pd(_mm_cvtepi32_pd(tmp), scalar); tmp = _mm_shuffle_epi32(tmp, shuf); out7 = _mm_mul_pd(_mm_cvtepi32_pd(tmp), scalar); } DECLARE_CONVERTER(sc8_item32_be, 1, fc64, 1, PRIORITY_SIMD){ const item32_t *input = reinterpret_cast<const item32_t *>(size_t(inputs[0]) & ~0x3); fc64_t *output = reinterpret_cast<fc64_t *>(outputs[0]); const __m128d scalar = _mm_set1_pd(scale_factor/(1 << 24)); size_t i = 0, j = 0; fc32_t dummy; size_t num_samps = nsamps; if ((size_t(inputs[0]) & 0x3) != 0){ item32_sc8_to_xx<uhd::ntohx>(input++, output++, 1, scale_factor); num_samps--; } #define convert_sc8_item32_1_to_fc64_1_bswap_guts(_al_) \ for (; j+7 < num_samps; j+=8, i+=4){ \ /* load from input */ \ __m128i tmpi = _mm_loadu_si128(reinterpret_cast<const __m128i *>(input+i)); \ \ /* unpack */ \ __m128d tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; \ unpack_sc32_8x(tmpi, tmp1, tmp0, tmp3, tmp2, tmp5, tmp4, tmp7, tmp6, scalar); \ \ /* store to output */ \ _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+j+0), tmp0); \ _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+j+1), tmp1); \ _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+j+2), tmp2); \ _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+j+3), tmp3); \ _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+j+4), tmp4); \ _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+j+5), tmp5); \ _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+j+6), tmp6); \ _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+j+7), tmp7); \ } //dispatch according to alignment if ((size_t(output) & 0xf) == 0){ convert_sc8_item32_1_to_fc64_1_bswap_guts(_) } else{ convert_sc8_item32_1_to_fc64_1_bswap_guts(u_) } //convert remainder item32_sc8_to_xx<uhd::ntohx>(input+i, output+j, num_samps-j, scale_factor); } DECLARE_CONVERTER(sc8_item32_le, 1, fc64, 1, PRIORITY_SIMD){ const item32_t *input = reinterpret_cast<const item32_t *>(size_t(inputs[0]) & ~0x3); fc64_t *output = reinterpret_cast<fc64_t *>(outputs[0]); const __m128d scalar = _mm_set1_pd(scale_factor/(1 << 24)); size_t i = 0, j = 0; fc32_t dummy; size_t num_samps = nsamps; if ((size_t(inputs[0]) & 0x3) != 0){ item32_sc8_to_xx<uhd::wtohx>(input++, output++, 1, scale_factor); num_samps--; } #define convert_sc8_item32_1_to_fc64_1_nswap_guts(_al_) \ for (; j+7 < num_samps; j+=8, i+=4){ \ /* load from input */ \ __m128i tmpi = _mm_loadu_si128(reinterpret_cast<const __m128i *>(input+i)); \ \ /* unpack */ \ __m128d tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; \ tmpi = _mm_or_si128(_mm_srli_epi16(tmpi, 8), _mm_slli_epi16(tmpi, 8)); /*byteswap*/\ unpack_sc32_8x(tmpi, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, scalar); \ \ /* store to output */ \ _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+j+0), tmp0); \ _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+j+1), tmp1); \ _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+j+2), tmp2); \ _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+j+3), tmp3); \ _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+j+4), tmp4); \ _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+j+5), tmp5); \ _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+j+6), tmp6); \ _mm_store ## _al_ ## pd(reinterpret_cast<double *>(output+j+7), tmp7); \ } //dispatch according to alignment if ((size_t(output) & 0xf) == 0){ convert_sc8_item32_1_to_fc64_1_nswap_guts(_) } else{ convert_sc8_item32_1_to_fc64_1_nswap_guts(u_) } //convert remainder item32_sc8_to_xx<uhd::wtohx>(input+i, output+j, num_samps-j, scale_factor); }