// // Copyright 2012-2013 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include "convert_common.hpp" #include #include using namespace uhd::convert; static const __m128i zeroi = _mm_setzero_si128(); template UHD_INLINE void unpack_sc32_4x(const __m128i& in, __m128& out0, __m128& out1, __m128& out2, __m128& out3, const __m128& scalar) { const __m128i tmplo = _mm_unpacklo_epi8(zeroi, in); /* value in upper 8 bits */ __m128i tmp0 = _mm_shuffle_epi32( _mm_unpacklo_epi16(zeroi, tmplo), shuf); /* value in upper 16 bits */ __m128i tmp1 = _mm_shuffle_epi32(_mm_unpackhi_epi16(zeroi, tmplo), shuf); out0 = _mm_mul_ps(_mm_cvtepi32_ps(tmp0), scalar); out1 = _mm_mul_ps(_mm_cvtepi32_ps(tmp1), scalar); const __m128i tmphi = _mm_unpackhi_epi8(zeroi, in); __m128i tmp2 = _mm_shuffle_epi32(_mm_unpacklo_epi16(zeroi, tmphi), shuf); __m128i tmp3 = _mm_shuffle_epi32(_mm_unpackhi_epi16(zeroi, tmphi), shuf); out2 = _mm_mul_ps(_mm_cvtepi32_ps(tmp2), scalar); out3 = _mm_mul_ps(_mm_cvtepi32_ps(tmp3), scalar); } DECLARE_CONVERTER(sc8_item32_be, 1, fc32, 1, PRIORITY_SIMD) { const item32_t* input = reinterpret_cast(size_t(inputs[0]) & ~0x3); fc32_t* output = reinterpret_cast(outputs[0]); const __m128 scalar = _mm_set_ps1(float(scale_factor) / (1 << 24)); const int shuf = _MM_SHUFFLE(3, 2, 1, 0); size_t i = 0, j = 0; fc32_t dummy; size_t num_samps = nsamps; if ((size_t(inputs[0]) & 0x3) != 0) { item32_sc8_to_xx(input++, output++, 1, scale_factor); num_samps--; } #define convert_sc8_item32_1_to_fc32_1_bswap_guts(_al_) \ for (; j + 7 < num_samps; j += 8, i += 4) { \ /* load from input */ \ __m128i tmpi = _mm_loadu_si128(reinterpret_cast(input + i)); \ \ /* unpack + swap 8-bit pairs */ \ __m128 tmp0, tmp1, tmp2, tmp3; \ unpack_sc32_4x(tmpi, tmp0, tmp1, tmp2, tmp3, scalar); \ \ /* store to output */ \ _mm_store##_al_##ps(reinterpret_cast(output + j + 0), tmp0); \ _mm_store##_al_##ps(reinterpret_cast(output + j + 2), tmp1); \ _mm_store##_al_##ps(reinterpret_cast(output + j + 4), tmp2); \ _mm_store##_al_##ps(reinterpret_cast(output + j + 6), tmp3); \ } // dispatch according to alignment if ((size_t(output) & 0xf) == 0) { convert_sc8_item32_1_to_fc32_1_bswap_guts(_) } else { convert_sc8_item32_1_to_fc32_1_bswap_guts(u_) } // convert remainder item32_sc8_to_xx(input + i, output + j, num_samps - j, scale_factor); } DECLARE_CONVERTER(sc8_item32_le, 1, fc32, 1, PRIORITY_SIMD) { const item32_t* input = reinterpret_cast(size_t(inputs[0]) & ~0x3); fc32_t* output = reinterpret_cast(outputs[0]); const __m128 scalar = _mm_set_ps1(float(scale_factor) / (1 << 24)); const int shuf = _MM_SHUFFLE(0, 1, 2, 3); size_t i = 0, j = 0; fc32_t dummy; size_t num_samps = nsamps; if ((size_t(inputs[0]) & 0x3) != 0) { item32_sc8_to_xx(input++, output++, 1, scale_factor); num_samps--; } #define convert_sc8_item32_1_to_fc32_1_nswap_guts(_al_) \ for (; j + 7 < num_samps; j += 8, i += 4) { \ /* load from input */ \ __m128i tmpi = _mm_loadu_si128(reinterpret_cast(input + i)); \ \ /* unpack + swap 8-bit pairs */ \ __m128 tmp0, tmp1, tmp2, tmp3; \ unpack_sc32_4x(tmpi, tmp0, tmp1, tmp2, tmp3, scalar); \ \ /* store to output */ \ _mm_store##_al_##ps(reinterpret_cast(output + j + 0), tmp0); \ _mm_store##_al_##ps(reinterpret_cast(output + j + 2), tmp1); \ _mm_store##_al_##ps(reinterpret_cast(output + j + 4), tmp2); \ _mm_store##_al_##ps(reinterpret_cast(output + j + 6), tmp3); \ } // dispatch according to alignment if ((size_t(output) & 0xf) == 0) { convert_sc8_item32_1_to_fc32_1_nswap_guts(_) } else { convert_sc8_item32_1_to_fc32_1_nswap_guts(u_) } // convert remainder item32_sc8_to_xx(input + i, output + j, num_samps - j, scale_factor); }