// // Copyright 2011-2012 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include "convert_common.hpp" #include #include using namespace uhd::convert; DECLARE_CONVERTER(sc16_item32_le, 1, fc64, 1, PRIORITY_SIMD){ const item32_t *input = reinterpret_cast(inputs[0]); fc64_t *output = reinterpret_cast(outputs[0]); const __m128d scalar = _mm_set1_pd(scale_factor/(1 << 16)); const __m128i zeroi = _mm_setzero_si128(); #define convert_item32_1_to_fc64_1_nswap_guts(_al_) \ for (; i+3 < nsamps; i+=4){ \ /* load from input */ \ __m128i tmpi = _mm_loadu_si128(reinterpret_cast(input+i)); \ \ /* unpack + swap 16-bit pairs */ \ tmpi = _mm_shufflelo_epi16(tmpi, _MM_SHUFFLE(2, 3, 0, 1)); \ tmpi = _mm_shufflehi_epi16(tmpi, _MM_SHUFFLE(2, 3, 0, 1)); \ __m128i tmpilo = _mm_unpacklo_epi16(zeroi, tmpi); /* value in upper 16 bits */ \ __m128i tmpihi = _mm_unpackhi_epi16(zeroi, tmpi); \ \ /* convert and scale */ \ __m128d tmp0 = _mm_mul_pd(_mm_cvtepi32_pd(tmpilo), scalar); \ tmpilo = _mm_unpackhi_epi64(tmpilo, zeroi); \ __m128d tmp1 = _mm_mul_pd(_mm_cvtepi32_pd(tmpilo), scalar); \ __m128d tmp2 = _mm_mul_pd(_mm_cvtepi32_pd(tmpihi), scalar); \ tmpihi = _mm_unpackhi_epi64(tmpihi, zeroi); \ __m128d tmp3 = _mm_mul_pd(_mm_cvtepi32_pd(tmpihi), scalar); \ \ /* store to output */ \ _mm_store ## _al_ ## pd(reinterpret_cast(output+i+0), tmp0); \ _mm_store ## _al_ ## pd(reinterpret_cast(output+i+1), tmp1); \ _mm_store ## _al_ ## pd(reinterpret_cast(output+i+2), tmp2); \ _mm_store ## _al_ ## pd(reinterpret_cast(output+i+3), tmp3); \ } \ size_t i = 0; //dispatch according to alignment if ((size_t(output) & 0xf) == 0){ convert_item32_1_to_fc64_1_nswap_guts(_) } else{ convert_item32_1_to_fc64_1_nswap_guts(u_) } //convert remainder item32_sc16_to_xx(input+i, output+i, nsamps-i, scale_factor); } DECLARE_CONVERTER(sc16_item32_be, 1, fc64, 1, PRIORITY_SIMD){ const item32_t *input = reinterpret_cast(inputs[0]); fc64_t *output = reinterpret_cast(outputs[0]); const __m128d scalar = _mm_set1_pd(scale_factor/(1 << 16)); const __m128i zeroi = _mm_setzero_si128(); #define convert_item32_1_to_fc64_1_bswap_guts(_al_) \ for (; i+3 < nsamps; i+=4){ \ /* load from input */ \ __m128i tmpi = _mm_loadu_si128(reinterpret_cast(input+i)); \ \ /* byteswap + unpack -> byteswap 16 bit words */ \ tmpi = _mm_or_si128(_mm_srli_epi16(tmpi, 8), _mm_slli_epi16(tmpi, 8)); \ __m128i tmpilo = _mm_unpacklo_epi16(zeroi, tmpi); /* value in upper 16 bits */ \ __m128i tmpihi = _mm_unpackhi_epi16(zeroi, tmpi); \ \ /* convert and scale */ \ __m128d tmp0 = _mm_mul_pd(_mm_cvtepi32_pd(tmpilo), scalar); \ tmpilo = _mm_unpackhi_epi64(tmpilo, zeroi); \ __m128d tmp1 = _mm_mul_pd(_mm_cvtepi32_pd(tmpilo), scalar); \ __m128d tmp2 = _mm_mul_pd(_mm_cvtepi32_pd(tmpihi), scalar); \ tmpihi = _mm_unpackhi_epi64(tmpihi, zeroi); \ __m128d tmp3 = _mm_mul_pd(_mm_cvtepi32_pd(tmpihi), scalar); \ \ /* store to output */ \ _mm_store ## _al_ ## pd(reinterpret_cast(output+i+0), tmp0); \ _mm_store ## _al_ ## pd(reinterpret_cast(output+i+1), tmp1); \ _mm_store ## _al_ ## pd(reinterpret_cast(output+i+2), tmp2); \ _mm_store ## _al_ ## pd(reinterpret_cast(output+i+3), tmp3); \ } \ size_t i = 0; //dispatch according to alignment if ((size_t(output) & 0xf) == 0){ convert_item32_1_to_fc64_1_bswap_guts(_) } else{ convert_item32_1_to_fc64_1_bswap_guts(u_) } //convert remainder item32_sc16_to_xx(input+i, output+i, nsamps-i, scale_factor); }