// // Copyright 2012-2013 Ettus Research LLC // // SPDX-License-Identifier: GPL-3.0 // #include "convert_common.hpp" #include #include using namespace uhd::convert; UHD_INLINE __m128i pack_sc8_item32_4x( const __m128i &in0, const __m128i &in1, const __m128i &in2, const __m128i &in3 ){ const __m128i lo = _mm_packs_epi32(in0, in1); const __m128i hi = _mm_packs_epi32(in2, in3); return _mm_packs_epi16(lo, hi); } UHD_INLINE __m128i pack_sc32_4x( const __m128d &lo, const __m128d &hi, const __m128d &scalar ){ const __m128i tmpi_lo = _mm_cvttpd_epi32(_mm_mul_pd(hi, scalar)); const __m128i tmpi_hi = _mm_cvttpd_epi32(_mm_mul_pd(lo, scalar)); return _mm_unpacklo_epi64(tmpi_lo, tmpi_hi); } DECLARE_CONVERTER(fc64, 1, sc8_item32_be, 1, PRIORITY_SIMD){ const fc64_t *input = reinterpret_cast(inputs[0]); item32_t *output = reinterpret_cast(outputs[0]); const __m128d scalar = _mm_set1_pd(scale_factor); #define convert_fc64_1_to_sc8_item32_1_bswap_guts(_al_) \ for (size_t j = 0; i+7 < nsamps; i+=8, j+=4){ \ /* load from input */ \ __m128d tmp0 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+0)); \ __m128d tmp1 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+1)); \ __m128d tmp2 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+2)); \ __m128d tmp3 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+3)); \ __m128d tmp4 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+4)); \ __m128d tmp5 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+5)); \ __m128d tmp6 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+6)); \ __m128d tmp7 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+7)); \ \ /* interleave */ \ const __m128i tmpi = pack_sc8_item32_4x( \ pack_sc32_4x(tmp1, tmp0, scalar), \ pack_sc32_4x(tmp3, tmp2, scalar), \ pack_sc32_4x(tmp5, tmp4, scalar), \ pack_sc32_4x(tmp7, tmp6, scalar) \ ); \ \ /* store to output */ \ _mm_storeu_si128(reinterpret_cast<__m128i *>(output+j), tmpi); \ } \ size_t i = 0; //dispatch according to alignment if ((size_t(input) & 0xf) == 0){ convert_fc64_1_to_sc8_item32_1_bswap_guts(_) } else{ convert_fc64_1_to_sc8_item32_1_bswap_guts(u_) } //convert remainder xx_to_item32_sc8(input+i, output+(i/2), nsamps-i, scale_factor); } DECLARE_CONVERTER(fc64, 1, sc8_item32_le, 1, PRIORITY_SIMD){ const fc64_t *input = reinterpret_cast(inputs[0]); item32_t *output = reinterpret_cast(outputs[0]); const __m128d scalar = _mm_set1_pd(scale_factor); #define convert_fc64_1_to_sc8_item32_1_nswap_guts(_al_) \ for (size_t j = 0; i+7 < nsamps; i+=8, j+=4){ \ /* load from input */ \ __m128d tmp0 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+0)); \ __m128d tmp1 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+1)); \ __m128d tmp2 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+2)); \ __m128d tmp3 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+3)); \ __m128d tmp4 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+4)); \ __m128d tmp5 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+5)); \ __m128d tmp6 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+6)); \ __m128d tmp7 = _mm_load ## _al_ ## pd(reinterpret_cast(input+i+7)); \ \ /* interleave */ \ __m128i tmpi = pack_sc8_item32_4x( \ pack_sc32_4x(tmp0, tmp1, scalar), \ pack_sc32_4x(tmp2, tmp3, scalar), \ pack_sc32_4x(tmp4, tmp5, scalar), \ pack_sc32_4x(tmp6, tmp7, scalar) \ ); \ tmpi = _mm_or_si128(_mm_srli_epi16(tmpi, 8), _mm_slli_epi16(tmpi, 8)); /*byteswap*/\ \ /* store to output */ \ _mm_storeu_si128(reinterpret_cast<__m128i *>(output+j), tmpi); \ } \ size_t i = 0; //dispatch according to alignment if ((size_t(input) & 0xf) == 0){ convert_fc64_1_to_sc8_item32_1_nswap_guts(_) } else{ convert_fc64_1_to_sc8_item32_1_nswap_guts(u_) } //convert remainder xx_to_item32_sc8(input+i, output+(i/2), nsamps-i, scale_factor); }