// // Copyright 2012-2013 Ettus Research LLC // Copyright 2018 Ettus Research, a National Instruments Company // // SPDX-License-Identifier: GPL-3.0-or-later // #include "convert_common.hpp" #include #include using namespace uhd::convert; template UHD_INLINE __m128i pack_sc32_4x(const __m128& in0, const __m128& in1, const __m128& in2, const __m128& in3, const __m128& scalar) { __m128i tmpi0 = _mm_cvtps_epi32(_mm_mul_ps(in0, scalar)); tmpi0 = _mm_shuffle_epi32(tmpi0, shuf); __m128i tmpi1 = _mm_cvtps_epi32(_mm_mul_ps(in1, scalar)); tmpi1 = _mm_shuffle_epi32(tmpi1, shuf); const __m128i lo = _mm_packs_epi32(tmpi0, tmpi1); __m128i tmpi2 = _mm_cvtps_epi32(_mm_mul_ps(in2, scalar)); tmpi2 = _mm_shuffle_epi32(tmpi2, shuf); __m128i tmpi3 = _mm_cvtps_epi32(_mm_mul_ps(in3, scalar)); tmpi3 = _mm_shuffle_epi32(tmpi3, shuf); const __m128i hi = _mm_packs_epi32(tmpi2, tmpi3); return _mm_packs_epi16(lo, hi); } DECLARE_CONVERTER(fc32, 1, sc8_item32_be, 1, PRIORITY_SIMD) { const fc32_t* input = reinterpret_cast(inputs[0]); item32_t* output = reinterpret_cast(outputs[0]); const __m128 scalar = _mm_set_ps1(float(scale_factor)); const int shuf = _MM_SHUFFLE(3, 2, 1, 0); #define convert_fc32_1_to_sc8_item32_1_bswap_guts(_al_) \ for (size_t j = 0; i + 7 < nsamps; i += 8, j += 4) { \ /* load from input */ \ __m128 tmp0 = _mm_load##_al_##ps(reinterpret_cast(input + i + 0)); \ __m128 tmp1 = _mm_load##_al_##ps(reinterpret_cast(input + i + 2)); \ __m128 tmp2 = _mm_load##_al_##ps(reinterpret_cast(input + i + 4)); \ __m128 tmp3 = _mm_load##_al_##ps(reinterpret_cast(input + i + 6)); \ \ /* convert */ \ const __m128i tmpi = pack_sc32_4x(tmp0, tmp1, tmp2, tmp3, scalar); \ \ /* store to output */ \ _mm_storeu_si128(reinterpret_cast<__m128i*>(output + j), tmpi); \ } size_t i = 0; // dispatch according to alignment if ((size_t(input) & 0xf) == 0) { convert_fc32_1_to_sc8_item32_1_bswap_guts(_) } else { convert_fc32_1_to_sc8_item32_1_bswap_guts(u_) } // convert remainder xx_to_item32_sc8(input + i, output + (i / 2), nsamps - i, scale_factor); } DECLARE_CONVERTER(fc32, 1, sc8_item32_le, 1, PRIORITY_SIMD) { const fc32_t* input = reinterpret_cast(inputs[0]); item32_t* output = reinterpret_cast(outputs[0]); const __m128 scalar = _mm_set_ps1(float(scale_factor)); const int shuf = _MM_SHUFFLE(0, 1, 2, 3); #define convert_fc32_1_to_sc8_item32_1_nswap_guts(_al_) \ for (size_t j = 0; i + 7 < nsamps; i += 8, j += 4) { \ /* load from input */ \ __m128 tmp0 = _mm_load##_al_##ps(reinterpret_cast(input + i + 0)); \ __m128 tmp1 = _mm_load##_al_##ps(reinterpret_cast(input + i + 2)); \ __m128 tmp2 = _mm_load##_al_##ps(reinterpret_cast(input + i + 4)); \ __m128 tmp3 = _mm_load##_al_##ps(reinterpret_cast(input + i + 6)); \ \ /* convert */ \ const __m128i tmpi = pack_sc32_4x(tmp0, tmp1, tmp2, tmp3, scalar); \ \ /* store to output */ \ _mm_storeu_si128(reinterpret_cast<__m128i*>(output + j), tmpi); \ } size_t i = 0; // dispatch according to alignment if ((size_t(input) & 0xf) == 0) { convert_fc32_1_to_sc8_item32_1_nswap_guts(_) } else { convert_fc32_1_to_sc8_item32_1_nswap_guts(u_) } // convert remainder xx_to_item32_sc8(input + i, output + (i / 2), nsamps - i, scale_factor); }