// // Copyright 2012-2013 Ettus Research LLC // // SPDX-License-Identifier: GPL-3.0 // #include "convert_common.hpp" #include <uhd/utils/byteswap.hpp> #include <emmintrin.h> using namespace uhd::convert; template <const int shuf> UHD_INLINE __m128i pack_sc32_4x( const __m128 &in0, const __m128 &in1, const __m128 &in2, const __m128 &in3, const __m128 &scalar ){ __m128i tmpi0 = _mm_cvtps_epi32(_mm_mul_ps(in0, scalar)); tmpi0 = _mm_shuffle_epi32(tmpi0, shuf); __m128i tmpi1 = _mm_cvtps_epi32(_mm_mul_ps(in1, scalar)); tmpi1 = _mm_shuffle_epi32(tmpi1, shuf); const __m128i lo = _mm_packs_epi32(tmpi0, tmpi1); __m128i tmpi2 = _mm_cvtps_epi32(_mm_mul_ps(in2, scalar)); tmpi2 = _mm_shuffle_epi32(tmpi2, shuf); __m128i tmpi3 = _mm_cvtps_epi32(_mm_mul_ps(in3, scalar)); tmpi3 = _mm_shuffle_epi32(tmpi3, shuf); const __m128i hi = _mm_packs_epi32(tmpi2, tmpi3); return _mm_packs_epi16(lo, hi); } DECLARE_CONVERTER(fc32, 1, sc8_item32_be, 1, PRIORITY_SIMD){ const fc32_t *input = reinterpret_cast<const fc32_t *>(inputs[0]); item32_t *output = reinterpret_cast<item32_t *>(outputs[0]); const __m128 scalar = _mm_set_ps1(float(scale_factor)); const int shuf = _MM_SHUFFLE(3, 2, 1, 0); #define convert_fc32_1_to_sc8_item32_1_bswap_guts(_al_) \ for (size_t j = 0; i+7 < nsamps; i+=8, j+=4){ \ /* load from input */ \ __m128 tmp0 = _mm_load ## _al_ ## ps(reinterpret_cast<const float *>(input+i+0)); \ __m128 tmp1 = _mm_load ## _al_ ## ps(reinterpret_cast<const float *>(input+i+2)); \ __m128 tmp2 = _mm_load ## _al_ ## ps(reinterpret_cast<const float *>(input+i+4)); \ __m128 tmp3 = _mm_load ## _al_ ## ps(reinterpret_cast<const float *>(input+i+6)); \ \ /* convert */ \ const __m128i tmpi = pack_sc32_4x<shuf>(tmp0, tmp1, tmp2, tmp3, scalar); \ \ /* store to output */ \ _mm_storeu_si128(reinterpret_cast<__m128i *>(output+j), tmpi); \ } \ size_t i = 0; //dispatch according to alignment if ((size_t(input) & 0xf) == 0){ convert_fc32_1_to_sc8_item32_1_bswap_guts(_) } else{ convert_fc32_1_to_sc8_item32_1_bswap_guts(u_) } //convert remainder xx_to_item32_sc8<uhd::htonx>(input+i, output+(i/2), nsamps-i, scale_factor); } DECLARE_CONVERTER(fc32, 1, sc8_item32_le, 1, PRIORITY_SIMD){ const fc32_t *input = reinterpret_cast<const fc32_t *>(inputs[0]); item32_t *output = reinterpret_cast<item32_t *>(outputs[0]); const __m128 scalar = _mm_set_ps1(float(scale_factor)); const int shuf = _MM_SHUFFLE(0, 1, 2, 3); #define convert_fc32_1_to_sc8_item32_1_nswap_guts(_al_) \ for (size_t j = 0; i+7 < nsamps; i+=8, j+=4){ \ /* load from input */ \ __m128 tmp0 = _mm_load ## _al_ ## ps(reinterpret_cast<const float *>(input+i+0)); \ __m128 tmp1 = _mm_load ## _al_ ## ps(reinterpret_cast<const float *>(input+i+2)); \ __m128 tmp2 = _mm_load ## _al_ ## ps(reinterpret_cast<const float *>(input+i+4)); \ __m128 tmp3 = _mm_load ## _al_ ## ps(reinterpret_cast<const float *>(input+i+6)); \ \ /* convert */ \ const __m128i tmpi = pack_sc32_4x<shuf>(tmp0, tmp1, tmp2, tmp3, scalar); \ \ /* store to output */ \ _mm_storeu_si128(reinterpret_cast<__m128i *>(output+j), tmpi); \ } \ size_t i = 0; //dispatch according to alignment if ((size_t(input) & 0xf) == 0){ convert_fc32_1_to_sc8_item32_1_nswap_guts(_) } else{ convert_fc32_1_to_sc8_item32_1_nswap_guts(u_) } //convert remainder xx_to_item32_sc8<uhd::htowx>(input+i, output+(i/2), nsamps-i, scale_factor); }