//
// Copyright 2011-2012 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "convert_common.hpp"
#include
#include
#include
using namespace uhd::convert;
static const size_t sc16_table_len = size_t(1 << 16);
typedef boost::uint16_t (*tohost16_type)(boost::uint16_t);
/***********************************************************************
* Implementation for sc16 to sc8 lookup table
* - Lookup the real and imaginary parts individually
**********************************************************************/
template
class convert_sc16_1_to_sc8_item32_1 : public converter{
public:
convert_sc16_1_to_sc8_item32_1(void): _table(sc16_table_len){}
void set_scalar(const double scalar){
for (size_t i = 0; i < sc16_table_len; i++){
const boost::int16_t val = boost::uint16_t(i);
_table[i] = boost::int8_t(boost::math::iround(val * scalar / 32767.));
}
}
void operator()(const input_type &inputs, const output_type &outputs, const size_t nsamps){
const sc16_t *input = reinterpret_cast(inputs[0]);
item32_t *output = reinterpret_cast(outputs[0]);
const size_t num_pairs = nsamps/2;
for (size_t i = 0, j = 0; i < num_pairs; i++, j+=2){
output[i] = this->lookup(input[j], input[j+1]);
}
if (nsamps != num_pairs*2){
output[num_pairs] = this->lookup(input[nsamps-1], 0);;
}
}
item32_t lookup(const sc16_t &in0, const sc16_t &in1){
if (swap){ //hope this compiles out, its a template constant
return
(item32_t(_table[size_t(in0.real())]) << 16) |
(item32_t(_table[size_t(in0.imag())]) << 24) |
(item32_t(_table[size_t(in1.real())]) << 0) |
(item32_t(_table[size_t(in1.imag())]) << 8) ;
}
return
(item32_t(_table[size_t(in0.real())]) << 8) |
(item32_t(_table[size_t(in0.imag())]) << 0) |
(item32_t(_table[size_t(in1.real())]) << 24) |
(item32_t(_table[size_t(in1.imag())]) << 16) ;
}
private:
std::vector _table;
};
/***********************************************************************
* Implementation for sc16 lookup table
* - Lookup the real and imaginary parts individually
**********************************************************************/
template
class convert_sc16_item32_1_to_fcxx_1 : public converter{
public:
convert_sc16_item32_1_to_fcxx_1(void): _table(sc16_table_len){}
void set_scalar(const double scalar){
for (size_t i = 0; i < sc16_table_len; i++){
const boost::uint16_t val = tohost(boost::uint16_t(i & 0xffff));
_table[i] = type(boost::int16_t(val)*scalar);
}
}
void operator()(const input_type &inputs, const output_type &outputs, const size_t nsamps){
const item32_t *input = reinterpret_cast(inputs[0]);
std::complex *output = reinterpret_cast *>(outputs[0]);
for (size_t i = 0; i < nsamps; i++){
const item32_t item = input[i];
output[i] = std::complex(
_table[boost::uint16_t(item >> re_shift)],
_table[boost::uint16_t(item >> im_shift)]
);
}
}
private:
std::vector _table;
};
/***********************************************************************
* Implementation for sc8 lookup table
* - Lookup the real and imaginary parts together
**********************************************************************/
template
class convert_sc8_item32_1_to_fcxx_1 : public converter{
public:
convert_sc8_item32_1_to_fcxx_1(void): _table(sc16_table_len){}
//special case for sc16 type, 32767 undoes float normalization
static type conv(const boost::int8_t &num, const double scalar){
if (sizeof(type) == sizeof(s16_t)){
return type(boost::math::iround(num*scalar*32767));
}
return type(num*scalar);
}
void set_scalar(const double scalar){
for (size_t i = 0; i < sc16_table_len; i++){
const boost::uint16_t val = tohost(boost::uint16_t(i & 0xffff));
const type real = conv(boost::int8_t(val >> 8), scalar);
const type imag = conv(boost::int8_t(val >> 0), scalar);
_table[i] = std::complex(real, imag);
}
}
void operator()(const input_type &inputs, const output_type &outputs, const size_t nsamps){
const item32_t *input = reinterpret_cast(size_t(inputs[0]) & ~0x3);
std::complex *output = reinterpret_cast *>(outputs[0]);
size_t num_samps = nsamps;
if ((size_t(inputs[0]) & 0x3) != 0){
const item32_t item0 = *input++;
*output++ = _table[boost::uint16_t(item0 >> hi_shift)];
num_samps--;
}
const size_t num_pairs = num_samps/2;
for (size_t i = 0, j = 0; i < num_pairs; i++, j+=2){
const item32_t item_i = (input[i]);
output[j] = _table[boost::uint16_t(item_i >> lo_shift)];
output[j + 1] = _table[boost::uint16_t(item_i >> hi_shift)];
}
if (num_samps != num_pairs*2){
const item32_t item_n = input[num_pairs];
output[num_samps-1] = _table[boost::uint16_t(item_n >> lo_shift)];
}
}
private:
std::vector > _table;
};
/***********************************************************************
* Factory functions and registration
**********************************************************************/
#ifdef BOOST_BIG_ENDIAN
# define SHIFT_PAIR0 16, 0
# define SHIFT_PAIR1 0, 16
# define BE_SWAP false
# define LE_SWAP true
#else
# define SHIFT_PAIR0 0, 16
# define SHIFT_PAIR1 16, 0
# define BE_SWAP true
# define LE_SWAP false
#endif
static converter::sptr make_convert_sc16_item32_be_1_to_fc32_1(void){
return converter::sptr(new convert_sc16_item32_1_to_fcxx_1());
}
static converter::sptr make_convert_sc16_item32_be_1_to_fc64_1(void){
return converter::sptr(new convert_sc16_item32_1_to_fcxx_1());
}
static converter::sptr make_convert_sc16_item32_le_1_to_fc32_1(void){
return converter::sptr(new convert_sc16_item32_1_to_fcxx_1());
}
static converter::sptr make_convert_sc16_item32_le_1_to_fc64_1(void){
return converter::sptr(new convert_sc16_item32_1_to_fcxx_1());
}
static converter::sptr make_convert_sc8_item32_be_1_to_fc32_1(void){
return converter::sptr(new convert_sc8_item32_1_to_fcxx_1());
}
static converter::sptr make_convert_sc8_item32_be_1_to_fc64_1(void){
return converter::sptr(new convert_sc8_item32_1_to_fcxx_1());
}
static converter::sptr make_convert_sc8_item32_le_1_to_fc32_1(void){
return converter::sptr(new convert_sc8_item32_1_to_fcxx_1());
}
static converter::sptr make_convert_sc8_item32_le_1_to_fc64_1(void){
return converter::sptr(new convert_sc8_item32_1_to_fcxx_1());
}
static converter::sptr make_convert_sc8_item32_be_1_to_sc16_1(void){
return converter::sptr(new convert_sc8_item32_1_to_fcxx_1());
}
static converter::sptr make_convert_sc8_item32_le_1_to_sc16_1(void){
return converter::sptr(new convert_sc8_item32_1_to_fcxx_1());
}
static converter::sptr make_convert_sc16_1_to_sc8_item32_be_1(void){
return converter::sptr(new convert_sc16_1_to_sc8_item32_1());
}
static converter::sptr make_convert_sc16_1_to_sc8_item32_le_1(void){
return converter::sptr(new convert_sc16_1_to_sc8_item32_1());
}
UHD_STATIC_BLOCK(register_convert_sc16_item32_1_to_fcxx_1){
uhd::convert::id_type id;
id.num_inputs = 1;
id.num_outputs = 1;
id.output_format = "fc32";
id.input_format = "sc16_item32_be";
uhd::convert::register_converter(id, &make_convert_sc16_item32_be_1_to_fc32_1, PRIORITY_TABLE);
id.output_format = "fc64";
id.input_format = "sc16_item32_be";
uhd::convert::register_converter(id, &make_convert_sc16_item32_be_1_to_fc64_1, PRIORITY_TABLE);
id.output_format = "fc32";
id.input_format = "sc16_item32_le";
uhd::convert::register_converter(id, &make_convert_sc16_item32_le_1_to_fc32_1, PRIORITY_TABLE);
id.output_format = "fc64";
id.input_format = "sc16_item32_le";
uhd::convert::register_converter(id, &make_convert_sc16_item32_le_1_to_fc64_1, PRIORITY_TABLE);
id.output_format = "fc32";
id.input_format = "sc8_item32_be";
uhd::convert::register_converter(id, &make_convert_sc8_item32_be_1_to_fc32_1, PRIORITY_TABLE);
id.output_format = "fc64";
id.input_format = "sc8_item32_be";
uhd::convert::register_converter(id, &make_convert_sc8_item32_be_1_to_fc64_1, PRIORITY_TABLE);
id.output_format = "fc32";
id.input_format = "sc8_item32_le";
uhd::convert::register_converter(id, &make_convert_sc8_item32_le_1_to_fc32_1, PRIORITY_TABLE);
id.output_format = "fc64";
id.input_format = "sc8_item32_le";
uhd::convert::register_converter(id, &make_convert_sc8_item32_le_1_to_fc64_1, PRIORITY_TABLE);
id.output_format = "sc16";
id.input_format = "sc8_item32_be";
uhd::convert::register_converter(id, &make_convert_sc8_item32_be_1_to_sc16_1, PRIORITY_TABLE);
id.output_format = "sc16";
id.input_format = "sc8_item32_le";
uhd::convert::register_converter(id, &make_convert_sc8_item32_le_1_to_sc16_1, PRIORITY_TABLE);
id.output_format = "sc16";
id.input_format = "sc8_item32_be";
uhd::convert::register_converter(id, &make_convert_sc16_1_to_sc8_item32_be_1, PRIORITY_TABLE);
id.output_format = "sc16";
id.input_format = "sc8_item32_le";
uhd::convert::register_converter(id, &make_convert_sc16_1_to_sc8_item32_le_1, PRIORITY_TABLE);
}