// // Copyright 2017 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "convert_unpack_sc12.hpp" using namespace uhd::convert; template struct convert_sc12_item32_1_to_star_1 : public converter { convert_sc12_item32_1_to_star_1(void):_scalar(0.0) { //NOP } void set_scalar(const double scalar) { const int unpack_growth = 16; _scalar = scalar/unpack_growth; } /* * This converter takes in 24 bits complex samples, 12 bits I and 12 bits Q, and converts them to type 'std::complex'. * 'type' is usually 'float'. * For the converter to work correctly the used managed_buffer which holds all samples of one packet has to be 32 bits aligned. * We assume 32 bits to be one line. This said the converter must be aware where it is supposed to start within 3 lines. * */ void operator()(const input_type &inputs, const output_type &outputs, const size_t nsamps) { /* * Looking at the line structure above we can identify 4 cases. * Each corresponds to the start of a different sample within a 3 line block. * head_samps derives the number of samples left within one block. * Then the number of bytes the converter has to rewind are calculated. */ const size_t head_samps = size_t(inputs[0]) & 0x3; size_t rewind = 0; switch(head_samps) { case 0: break; case 1: rewind = 9; break; case 2: rewind = 6; break; case 3: rewind = 3; break; } /* * The pointer *input now points to the head of a 3 line block. */ const item32_sc12_3x *input = reinterpret_cast(size_t(inputs[0]) - rewind); std::complex *output = reinterpret_cast *>(outputs[0]); //helper variables std::complex dummy0, dummy1, dummy2; size_t i = 0, o = 0; /* * handle the head case * head_samps holds the number of samples left in a block. * The 3 line converter is called for the whole block and already processed samples are dumped. * We don't run into the risk of a SIGSEGV because input will always point to valid memory within a managed_buffer. * Furthermore the bytes in a buffer remain unchanged after they have been copied into it. */ switch (head_samps) { case 0: break; //no head case 1: convert_sc12_item32_3_to_star_4(input[i++], dummy0, dummy1, dummy2, output[0], _scalar); break; case 2: convert_sc12_item32_3_to_star_4(input[i++], dummy0, dummy1, output[0], output[1], _scalar); break; case 3: convert_sc12_item32_3_to_star_4(input[i++], dummy0, output[0], output[1], output[2], _scalar); break; } o += head_samps; //convert the body while (o+3 < nsamps) { convert_sc12_item32_3_to_star_4(input[i], output[o+0], output[o+1], output[o+2], output[o+3], _scalar); i++; o += 4; } /* * handle the tail case * The converter can be called with any number of samples to be converted. * This can end up in only a part of a block to be converted in one call. * We never have to worry about SIGSEGVs here as long as we end in the middle of a managed_buffer. * If we are at the end of managed_buffer there are 2 precautions to prevent SIGSEGVs. * Firstly only a read operation is performed. * Secondly managed_buffers allocate a fixed size memory which is always larger than the actually used size. * e.g. The current sample maximum is 2000 samples in a packet over USB. * With sc12 samples a packet consists of 6000kb but managed_buffers allocate 16kb each. * Thus we don't run into problems here either. */ const size_t tail_samps = nsamps - o; switch (tail_samps) { case 0: break; //no tail case 1: convert_sc12_item32_3_to_star_4(input[i], output[o+0], dummy0, dummy1, dummy2, _scalar); break; case 2: convert_sc12_item32_3_to_star_4(input[i], output[o+0], output[o+1], dummy1, dummy2, _scalar); break; case 3: convert_sc12_item32_3_to_star_4(input[i], output[o+0], output[o+1], output[o+2], dummy2, _scalar); break; } } double _scalar; }; static converter::sptr make_convert_sc12_item32_le_1_to_fc32_1(void) { return converter::sptr(new convert_sc12_item32_1_to_star_1()); } static converter::sptr make_convert_sc12_item32_be_1_to_fc32_1(void) { return converter::sptr(new convert_sc12_item32_1_to_star_1()); } static converter::sptr make_convert_sc12_item32_le_1_to_sc16_1(void) { return converter::sptr(new convert_sc12_item32_1_to_star_1()); } static converter::sptr make_convert_sc12_item32_be_1_to_sc16_1(void) { return converter::sptr(new convert_sc12_item32_1_to_star_1()); } UHD_STATIC_BLOCK(register_convert_unpack_sc12) { uhd::convert::register_bytes_per_item("sc12", 3/*bytes*/); uhd::convert::id_type id; id.num_inputs = 1; id.num_outputs = 1; id.output_format = "fc32"; id.input_format = "sc12_item32_le"; uhd::convert::register_converter(id, &make_convert_sc12_item32_le_1_to_fc32_1, PRIORITY_GENERAL); id.input_format = "sc12_item32_be"; uhd::convert::register_converter(id, &make_convert_sc12_item32_be_1_to_fc32_1, PRIORITY_GENERAL); id.output_format = "sc16"; id.input_format = "sc12_item32_le"; uhd::convert::register_converter(id, &make_convert_sc12_item32_le_1_to_sc16_1, PRIORITY_GENERAL); id.input_format = "sc12_item32_be"; uhd::convert::register_converter(id, &make_convert_sc12_item32_be_1_to_sc16_1, PRIORITY_GENERAL); }