//
// Copyright 2013 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "convert_common.hpp"
#include
#include
#include
#include
using namespace uhd::convert;
typedef boost::uint32_t (*tohost32_type)(boost::uint32_t);
/* C language specification requires this to be packed
* (i.e., line0, line1, line2 will be in adjacent memory locations).
* If this was not true, we'd need compiler flags here to specify
* alignment/packing.
*/
struct item32_sc12_3x
{
item32_t line0;
item32_t line1;
item32_t line2;
};
/*
* convert_sc12_item32_3_to_star_4 takes in 3 lines with 32 bit each
* and converts them 4 samples of type 'std::complex'.
* The structure of the 3 lines is as follows:
* _ _ _ _ _ _ _ _
* |_ _ _1_ _ _|_ _|
* |_2_ _ _|_ _ _3_|
* |_ _|_ _ _4_ _ _|
*
* The numbers mark the position of one complex sample.
*/
template
void convert_sc12_item32_3_to_star_4
(
const item32_sc12_3x &input,
std::complex &out0,
std::complex &out1,
std::complex &out2,
std::complex &out3,
const double scalar
)
{
//step 0: extract the lines from the input buffer
const item32_t line0 = tohost(input.line0);
const item32_t line1 = tohost(input.line1);
const item32_t line2 = tohost(input.line2);
const boost::uint64_t line01 = (boost::uint64_t(line0) << 32) | line1;
const boost::uint64_t line12 = (boost::uint64_t(line1) << 32) | line2;
//step 1: shift out and mask off the individual numbers
const type i0 = type(boost::int16_t((line0 >> 16) & 0xfff0)*scalar);
const type q0 = type(boost::int16_t((line0 >> 4) & 0xfff0)*scalar);
const type i1 = type(boost::int16_t((line01 >> 24) & 0xfff0)*scalar);
const type q1 = type(boost::int16_t((line1 >> 12) & 0xfff0)*scalar);
const type i2 = type(boost::int16_t((line1 >> 0) & 0xfff0)*scalar);
const type q2 = type(boost::int16_t((line12 >> 20) & 0xfff0)*scalar);
const type i3 = type(boost::int16_t((line2 >> 8) & 0xfff0)*scalar);
const type q3 = type(boost::int16_t((line2 << 4) & 0xfff0)*scalar);
//step 2: load the outputs
out0 = std::complex(i0, q0);
out1 = std::complex(i1, q1);
out2 = std::complex(i2, q2);
out3 = std::complex(i3, q3);
}
template
struct convert_sc12_item32_1_to_star_1 : public converter
{
convert_sc12_item32_1_to_star_1(void):_scalar(0.0)
{
//NOP
}
void set_scalar(const double scalar)
{
const int unpack_growth = 16;
_scalar = scalar/unpack_growth;
}
/*
* This converter takes in 24 bits complex samples, 12 bits I and 12 bits Q, and converts them to type 'std::complex'.
* 'type' is usually 'float'.
* For the converter to work correctly the used managed_buffer which holds all samples of one packet has to be 32 bits aligned.
* We assume 32 bits to be one line. This said the converter must be aware where it is supposed to start within 3 lines.
*
*/
void operator()(const input_type &inputs, const output_type &outputs, const size_t nsamps)
{
/*
* Looking at the line structure above we can identify 4 cases.
* Each corresponds to the start of a different sample within a 3 line block.
* head_samps derives the number of samples left within one block.
* Then the number of bytes the converter has to rewind are calculated.
*/
const size_t head_samps = size_t(inputs[0]) & 0x3;
size_t rewind = 0;
switch(head_samps)
{
case 0: break;
case 1: rewind = 9; break;
case 2: rewind = 6; break;
case 3: rewind = 3; break;
}
/*
* The pointer *input now points to the head of a 3 line block.
*/
const item32_sc12_3x *input = reinterpret_cast(size_t(inputs[0]) - rewind);
std::complex *output = reinterpret_cast *>(outputs[0]);
//helper variables
std::complex dummy0, dummy1, dummy2;
size_t i = 0, o = 0;
/*
* handle the head case
* head_samps holds the number of samples left in a block.
* The 3 line converter is called for the whole block and already processed samples are dumped.
* We don't run into the risk of a SIGSEGV because input will always point to valid memory within a managed_buffer.
* Furthermore the bytes in a buffer remain unchanged after they have been copied into it.
*/
switch (head_samps)
{
case 0: break; //no head
case 1: convert_sc12_item32_3_to_star_4(input[i++], dummy0, dummy1, dummy2, output[0], _scalar); break;
case 2: convert_sc12_item32_3_to_star_4(input[i++], dummy0, dummy1, output[0], output[1], _scalar); break;
case 3: convert_sc12_item32_3_to_star_4(input[i++], dummy0, output[0], output[1], output[2], _scalar); break;
}
o += head_samps;
//convert the body
while (o+3 < nsamps)
{
convert_sc12_item32_3_to_star_4(input[i], output[o+0], output[o+1], output[o+2], output[o+3], _scalar);
i++; o += 4;
}
/*
* handle the tail case
* The converter can be called with any number of samples to be converted.
* This can end up in only a part of a block to be converted in one call.
* We never have to worry about SIGSEGVs here as long as we end in the middle of a managed_buffer.
* If we are at the end of managed_buffer there are 2 precautions to prevent SIGSEGVs.
* Firstly only a read operation is performed.
* Secondly managed_buffers allocate a fixed size memory which is always larger than the actually used size.
* e.g. The current sample maximum is 2000 samples in a packet over USB.
* With sc12 samples a packet consists of 6000kb but managed_buffers allocate 16kb each.
* Thus we don't run into problems here either.
*/
const size_t tail_samps = nsamps - o;
switch (tail_samps)
{
case 0: break; //no tail
case 1: convert_sc12_item32_3_to_star_4(input[i], output[o+0], dummy0, dummy1, dummy2, _scalar); break;
case 2: convert_sc12_item32_3_to_star_4(input[i], output[o+0], output[o+1], dummy1, dummy2, _scalar); break;
case 3: convert_sc12_item32_3_to_star_4(input[i], output[o+0], output[o+1], output[o+2], dummy2, _scalar); break;
}
}
double _scalar;
};
static converter::sptr make_convert_sc12_item32_le_1_to_fc32_1(void)
{
return converter::sptr(new convert_sc12_item32_1_to_star_1());
}
static converter::sptr make_convert_sc12_item32_be_1_to_fc32_1(void)
{
return converter::sptr(new convert_sc12_item32_1_to_star_1());
}
UHD_STATIC_BLOCK(register_convert_unpack_sc12)
{
uhd::convert::register_bytes_per_item("sc12", 3/*bytes*/);
uhd::convert::id_type id;
id.num_inputs = 1;
id.num_outputs = 1;
id.output_format = "fc32";
id.input_format = "sc12_item32_le";
uhd::convert::register_converter(id, &make_convert_sc12_item32_le_1_to_fc32_1, PRIORITY_GENERAL);
id.input_format = "sc12_item32_be";
uhd::convert::register_converter(id, &make_convert_sc12_item32_be_1_to_fc32_1, PRIORITY_GENERAL);
}