// // Copyright 2013 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "convert_common.hpp" #include #include #include #include using namespace uhd::convert; typedef boost::uint32_t (*towire32_type)(boost::uint32_t); /* C language specification requires this to be packed * (i.e., line0, line1, line2 will be in adjacent memory locations). * If this was not true, we'd need compiler flags here to specify * alignment/packing. */ struct item32_sc12_3x { item32_t line0; item32_t line1; item32_t line2; }; enum item32_sc12_3x_enable { CONVERT12_LINE0 = 0x01, CONVERT12_LINE1 = 0x02, CONVERT12_LINE2 = 0x04, CONVERT12_LINE_ALL = 0x07, }; /* * Packed 12-bit converter with selective line enable * * The converter operates on 4 complex inputs and selectively writes to one to * three 32-bit lines. Line selection allows for partial writes of less than * 4 complex samples, or a full 3 x 32-bit struct. Writes are always full 32-bit * lines, so in the case of partial writes, the number of bytes written will * exceed the the number of bytes filled by actual samples. * * _ _ _ _ _ _ _ _ * |_ _ _1_ _ _|_ _| 0 * |_2_ _ _|_ _ _3_| * |_ _|_ _ _4_ _ _| 2 * 31 0 */ template void convert_star_4_to_sc12_item32_3 ( const std::complex &in0, const std::complex &in1, const std::complex &in2, const std::complex &in3, const int enable, item32_sc12_3x &output, const double scalar ) { const item32_t i0 = boost::int32_t(type(in0.real()*scalar)) & 0xfff; const item32_t q0 = boost::int32_t(type(in0.imag()*scalar)) & 0xfff; const item32_t i1 = boost::int32_t(type(in1.real()*scalar)) & 0xfff; const item32_t q1 = boost::int32_t(type(in1.imag()*scalar)) & 0xfff; const item32_t i2 = boost::int32_t(type(in2.real()*scalar)) & 0xfff; const item32_t q2 = boost::int32_t(type(in2.imag()*scalar)) & 0xfff; const item32_t i3 = boost::int32_t(type(in3.real()*scalar)) & 0xfff; const item32_t q3 = boost::int32_t(type(in3.imag()*scalar)) & 0xfff; const item32_t line0 = (i0 << 20) | (q0 << 8) | (i1 >> 4); const item32_t line1 = (i1 << 28) | (q1 << 16) | (i2 << 4) | (q2 >> 8); const item32_t line2 = (q2 << 24) | (i3 << 12) | (q3); if (enable & CONVERT12_LINE0) output.line0 = towire(line0); if (enable & CONVERT12_LINE1) output.line1 = towire(line1); if (enable & CONVERT12_LINE2) output.line2 = towire(line2); } template struct convert_star_1_to_sc12_item32_1 : public converter { convert_star_1_to_sc12_item32_1(void):_scalar(0.0) { //NOP } void set_scalar(const double scalar) { _scalar = scalar; } void operator()(const input_type &inputs, const output_type &outputs, const size_t nsamps) { const std::complex *input = reinterpret_cast *>(inputs[0]); /* * Effectively outputs will point to a managed_buffer instance. These buffers are 32 bit aligned. * For a detailed description see comments in 'convert_unpack_sc12.cpp'. */ const size_t head_samps = size_t(outputs[0]) & 0x3; int enable; size_t rewind = 0; switch(head_samps) { case 0: break; case 1: rewind = 9; break; case 2: rewind = 6; break; case 3: rewind = 3; break; } item32_sc12_3x *output = reinterpret_cast(size_t(outputs[0]) - rewind); //helper variables size_t i = 0, o = 0; //handle the head case switch (head_samps) { case 0: break; //no head case 1: enable = CONVERT12_LINE2; convert_star_4_to_sc12_item32_3(0, 0, 0, input[0], enable, output[o++], _scalar); break; case 2: enable = CONVERT12_LINE2 | CONVERT12_LINE1; convert_star_4_to_sc12_item32_3(0, 0, input[0], input[1], enable, output[o++], _scalar); break; case 3: enable = CONVERT12_LINE2 | CONVERT12_LINE1 | CONVERT12_LINE0; convert_star_4_to_sc12_item32_3(0, input[0], input[1], input[2], enable, output[o++], _scalar); break; } i += head_samps; //convert the body while (i+3 < nsamps) { convert_star_4_to_sc12_item32_3(input[i+0], input[i+1], input[i+2], input[i+3], CONVERT12_LINE_ALL, output[o], _scalar); o++; i += 4; } //handle the tail case const size_t tail_samps = nsamps - i; switch (tail_samps) { case 0: break; //no tail case 1: enable = CONVERT12_LINE0; convert_star_4_to_sc12_item32_3(input[i+0], 0, 0, 0, enable, output[o], _scalar); break; case 2: enable = CONVERT12_LINE0 | CONVERT12_LINE1; convert_star_4_to_sc12_item32_3(input[i+0], input[i+1], 0, 0, enable, output[o], _scalar); break; case 3: enable = CONVERT12_LINE0 | CONVERT12_LINE1 | CONVERT12_LINE2; convert_star_4_to_sc12_item32_3(input[i+0], input[i+1], input[i+2], 0, enable, output[o], _scalar); break; } } double _scalar; }; static converter::sptr make_convert_fc32_1_to_sc12_item32_le_1(void) { return converter::sptr(new convert_star_1_to_sc12_item32_1()); } static converter::sptr make_convert_fc32_1_to_sc12_item32_be_1(void) { return converter::sptr(new convert_star_1_to_sc12_item32_1()); } UHD_STATIC_BLOCK(register_convert_pack_sc12) { //uhd::convert::register_bytes_per_item("sc12", 3/*bytes*/); //registered in unpack uhd::convert::id_type id; id.num_inputs = 1; id.num_outputs = 1; id.input_format = "fc32"; id.output_format = "sc12_item32_le"; uhd::convert::register_converter(id, &make_convert_fc32_1_to_sc12_item32_le_1, PRIORITY_GENERAL); id.output_format = "sc12_item32_be"; uhd::convert::register_converter(id, &make_convert_fc32_1_to_sc12_item32_be_1, PRIORITY_GENERAL); }