//
// Copyright 2013 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
#include "convert_common.hpp"
#include
#include
#include
#include
using namespace uhd::convert;
typedef uint32_t (*towire32_type)(uint32_t);
/* C language specification requires this to be packed
* (i.e., line0, line1, line2 will be in adjacent memory locations).
* If this was not true, we'd need compiler flags here to specify
* alignment/packing.
*/
struct item32_sc12_3x
{
item32_t line0;
item32_t line1;
item32_t line2;
};
enum item32_sc12_3x_enable {
CONVERT12_LINE0 = 0x01,
CONVERT12_LINE1 = 0x02,
CONVERT12_LINE2 = 0x04,
CONVERT12_LINE_ALL = 0x07,
};
/*
* Packed 12-bit converter with selective line enable
*
* The converter operates on 4 complex inputs and selectively writes to one to
* three 32-bit lines. Line selection allows for partial writes of less than
* 4 complex samples, or a full 3 x 32-bit struct. Writes are always full 32-bit
* lines, so in the case of partial writes, the number of bytes written will
* exceed the the number of bytes filled by actual samples.
*
* _ _ _ _ _ _ _ _
* |_ _ _1_ _ _|_ _| 0
* |_2_ _ _|_ _ _3_|
* |_ _|_ _ _4_ _ _| 2
* 31 0
*/
template
void convert_star_4_to_sc12_item32_3
(
const std::complex &in0,
const std::complex &in1,
const std::complex &in2,
const std::complex &in3,
const int enable,
item32_sc12_3x &output,
const double scalar
)
{
const item32_t i0 = int32_t(type(in0.real()*scalar)) & 0xfff;
const item32_t q0 = int32_t(type(in0.imag()*scalar)) & 0xfff;
const item32_t i1 = int32_t(type(in1.real()*scalar)) & 0xfff;
const item32_t q1 = int32_t(type(in1.imag()*scalar)) & 0xfff;
const item32_t i2 = int32_t(type(in2.real()*scalar)) & 0xfff;
const item32_t q2 = int32_t(type(in2.imag()*scalar)) & 0xfff;
const item32_t i3 = int32_t(type(in3.real()*scalar)) & 0xfff;
const item32_t q3 = int32_t(type(in3.imag()*scalar)) & 0xfff;
const item32_t line0 = (i0 << 20) | (q0 << 8) | (i1 >> 4);
const item32_t line1 = (i1 << 28) | (q1 << 16) | (i2 << 4) | (q2 >> 8);
const item32_t line2 = (q2 << 24) | (i3 << 12) | (q3);
if (enable & CONVERT12_LINE0)
output.line0 = towire(line0);
if (enable & CONVERT12_LINE1)
output.line1 = towire(line1);
if (enable & CONVERT12_LINE2)
output.line2 = towire(line2);
}
template
struct convert_star_1_to_sc12_item32_1 : public converter
{
convert_star_1_to_sc12_item32_1(void):_scalar(0.0)
{
//NOP
}
void set_scalar(const double scalar)
{
_scalar = scalar;
}
void operator()(const input_type &inputs, const output_type &outputs, const size_t nsamps)
{
const std::complex *input = reinterpret_cast *>(inputs[0]);
/*
* Effectively outputs will point to a managed_buffer instance. These buffers are 32 bit aligned.
* For a detailed description see comments in 'convert_unpack_sc12.cpp'.
*/
const size_t head_samps = size_t(outputs[0]) & 0x3;
int enable;
size_t rewind = 0;
switch(head_samps)
{
case 0: break;
case 1: rewind = 9; break;
case 2: rewind = 6; break;
case 3: rewind = 3; break;
}
item32_sc12_3x *output = reinterpret_cast(size_t(outputs[0]) - rewind);
//helper variables
size_t i = 0, o = 0;
//handle the head case
switch (head_samps)
{
case 0:
break; //no head
case 1:
enable = CONVERT12_LINE2;
convert_star_4_to_sc12_item32_3(0, 0, 0, input[0], enable, output[o++], _scalar);
break;
case 2:
enable = CONVERT12_LINE2 | CONVERT12_LINE1;
convert_star_4_to_sc12_item32_3(0, 0, input[0], input[1], enable, output[o++], _scalar);
break;
case 3:
enable = CONVERT12_LINE2 | CONVERT12_LINE1 | CONVERT12_LINE0;
convert_star_4_to_sc12_item32_3(0, input[0], input[1], input[2], enable, output[o++], _scalar);
break;
}
i += head_samps;
//convert the body
while (i+3 < nsamps)
{
convert_star_4_to_sc12_item32_3(input[i+0], input[i+1], input[i+2], input[i+3], CONVERT12_LINE_ALL, output[o], _scalar);
o++; i += 4;
}
//handle the tail case
const size_t tail_samps = nsamps - i;
switch (tail_samps)
{
case 0:
break; //no tail
case 1:
enable = CONVERT12_LINE0;
convert_star_4_to_sc12_item32_3(input[i+0], 0, 0, 0, enable, output[o], _scalar);
break;
case 2:
enable = CONVERT12_LINE0 | CONVERT12_LINE1;
convert_star_4_to_sc12_item32_3(input[i+0], input[i+1], 0, 0, enable, output[o], _scalar);
break;
case 3:
enable = CONVERT12_LINE0 | CONVERT12_LINE1 | CONVERT12_LINE2;
convert_star_4_to_sc12_item32_3(input[i+0], input[i+1], input[i+2], 0, enable, output[o], _scalar);
break;
}
}
double _scalar;
};
static converter::sptr make_convert_fc32_1_to_sc12_item32_le_1(void)
{
return converter::sptr(new convert_star_1_to_sc12_item32_1());
}
static converter::sptr make_convert_fc32_1_to_sc12_item32_be_1(void)
{
return converter::sptr(new convert_star_1_to_sc12_item32_1());
}
UHD_STATIC_BLOCK(register_convert_pack_sc12)
{
//uhd::convert::register_bytes_per_item("sc12", 3/*bytes*/); //registered in unpack
uhd::convert::id_type id;
id.num_inputs = 1;
id.num_outputs = 1;
id.input_format = "fc32";
id.output_format = "sc12_item32_le";
uhd::convert::register_converter(id, &make_convert_fc32_1_to_sc12_item32_le_1, PRIORITY_GENERAL);
id.output_format = "sc12_item32_be";
uhd::convert::register_converter(id, &make_convert_fc32_1_to_sc12_item32_be_1, PRIORITY_GENERAL);
}